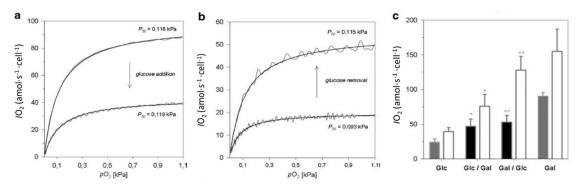

High-resolution respirometry of cancer cells: normoxia and hypoxia

J Bioenerg Biomembr (2010) 42:55–67 DOI 10.1007/s10863-009-9267-x


Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia

Katarína Smolková • Nadège Bellance • Francesca Scandurra • Elisabeth Génot • Erich Gnaiger • Lydie Plecitá-Hlavatá • Petr Ježek • Rodrigue Rossignol

Metabolic reprogramming in breast cancer cells increase oxidative phosphorylation and decrease the apparent affinity of oxygen after 4 days of glucose deprivation

Figure 1. Cell respiration in glucose/glucose-deprived medium. (a) ROUTINE respiration in different mediums for HTB-125 (control) and HTB-126 (breast cancer) cells. **(b)** Cell specific respiration flow as a function of p_{02} in glucose (lower lines), after glucose removal (middle line) and galactose medium (upper line). **(c)** Influence of the media culture in cell c_{50} . Values are means \pm SD, n>5 and *******p*-value<0.05.

Figure 2. Crabtree effect in breast cancer. (a) Effect of glucose addition **(b)** or removal on ROUTINE respiration with their corresponding p50 values. (c) comparison of cancer cells respiration in different media. ROUTINE respiration (full bars) and ETS capacity (empty bars). Values are means \pm SD, n>5 and ***p*-value<0.05.

Reference: Smolková K, Bellance N, Scandurra F, Génot E, Gnaiger E, Plecitá-Hlavatá L, Ježek P, Rossignol R (2010) Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bio energ Biomembr 42:55-67.

Figures and texts slightly modified based on the recommendations of the COST Action MitoEAGLE CA15203. doi:10.26124/mitofit:190001.v2