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Abstract 
 

Cell respiration reflects mitochondrial fitness and 
plays a pivotal role in health and disease. Despite the 
rapidly increasing number of applications of cell 
respirometry to address current challenges in 
biomedical research, cross-references are rare 
between respirometric projects and platforms. 
Evaluation of accuracy and reproducibility between 
laboratories requires presentation of results in a 
common format independent of the applied method. 
When cell respiration is expressed as oxygen 
consumption rate in an experimental chamber, 
normalization is mandatory for comparability of 
results. Concept-driven normalization and 
regression analysis are key towards bioenergetic 
cluster analysis presented as a graphical tool to 
identify discrete data populations. 
 

 In a meta-analysis of human skin fibroblasts, 
high-resolution respirometry and polarography 
covering cell senescence and the human age range 
are compared with multiwell respirometry. The 
common coupling control protocol measures 
ROUTINE respiration of living cells followed by 
sequential titrations of oligomycin, uncoupler, and 
inhibitors of electron transfer. 
 

https://wiki.oroboros.at/index.php/Gnaiger_2021_MitoFit_BCA
https://zenodo.org/record/5518506#.YUl_SX2xWCg
mailto:erich.gnaiger@oroboros.at
https://orcid.org/0000-0003-3647-5895
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ROUTINE respiration, R  
 

LEAK respiration, L 
 

electron transfer capacity, E 
residual oxygen 

consumption, Rox  
 

L/E flux control ratio  
 

net E, netE = E-L 
E-L coupling efficiency, jE-L = 

(E-L)/E = 1-L/E 
 

R/E flux control ratio  
 

reserve E, resE = E-R  
 

E-R reserve efficiency, jE-R = 
(E-R)/E = 1-R/E 

 

net R, R-L  
 

net R-L control ratio, (R-L)/E 

Bioenergetic cluster analysis increases the 
resolution of outliers within and differences 
between groups. An outlier-skewness index is 
introduced as a guide towards logarithmic 
transformation for statistical analysis. Isolinear 
clusters are separated by variations in the extent of 
a quantity that correlates with the rate, whereas 
heterolinear clusters fall on different regression 
lines. Dispersed clusters are clouds of data separated 
by a critical threshold value. Bioenergetic cluster 
analysis provides new insights into mitochondrial 
respiratory control and a guideline for establishing a 
quality control paradigm for bioenergetics and 
databases in mitochondrial physiology. 

 

Graphical abstract – Bioenergetic 
cluster analysis BCA. Normalization of 
respiration (O2 flux) is graphically 
represented in Y/X plots and evaluated by 
regression analysis, considering variances 
of the reference variable and O2 flux. 
Selection of a reference O2 flux as the 
reference in a particular respiratory state 
yields normalization independent of 
measurements of cell volume, protein 
mass, or mitochondrial markers. 
Regression analysis is applied for 
distinguishing isolinear, heterolinear and 
dispersed clusters in BCA for outlier 
characterization and corresponding 
evaluation of mitochondrial respiratory 
control in diagnostic groups. 
 

1. Introduction 
 

 Upon compromise of mitochondrial functional fitness, cell respiration and energy 
metabolism are impaired with a negative impact on quality of life, healthy aging, and 
resistance to degenerative diseases and immunological disorders (Wallace et al 2010; 
Nunnari, Suomalainen 2012; Herst et al 2017; Annesley, Fisher 2019). Physical exercise 
and a caloric balanced lifestyle stimulate mitochondrial biogenesis and quality control in 
muscle tissue and provide a systemic nonpharmacological intervention to prevent 
mitochondrial dysfunction that is prevalent in many conditions such as obesity (de 
Mello et al 2018; Han et al 2019; Hood et al 2019; Memme et al 2021). Complementary 
to research on isolated mitochondria and permeabilized cells or tissues, experiments 
with living cells play a key role in biomedical research and diagnostic studies of 
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mitochondrial diseases. Therefore, cultured human cell lines provide an alternative to 
invasive biopsies and animal testing, which needs critical evaluation (Schöpf et al 2020). 
 

 Respiratory control in living cells is studied by sequential measurement of 
ROUTINE respiration R, oligomycin-inhibited LEAK respiration L (this step may be 
omitted as a control), uncoupler-stimulated electron transfer (ET) capacity E, and 
residual oxygen consumption Rox after inhibition of ET by rotenone and antimycin A 
(Steinlechner-Maran et al 1996; Villani, Attardi 1997; Renner et al 2003; Hütter et al 
2004; Wu et al 2007; Gnaiger 2020). Respirometric coupling control protocols in living 
cells are carried out in cell culture media or mitochondrial respiration media which may 
be supplemented by respiratory fuel substrates (Karabatsiakis et al 2014; Doerrier et al 
2018). The term ‘mitochondrial stress test’ (Jaber et al 2020) is used synonymously for 
the original coupling control or phosphorylation control protocol (Gnaiger 2008). 
Despite of considerable standardization of these substrate-uncoupler-inhibitor titration 
(SUIT) protocols, surprisingly few compilations and comparisons are available of 
quantitative respirometric results on living cells studied in different projects and 
laboratories, and by application of different instrumental platforms (Wagner et al 2011; 
Mahapatra et al 2018; Gnaiger 2020; Zdrazilova et al 2021). Respiratory rates 
normalized for sample-specific attributes are open for meta-analyses to address 
research topics beyond the restraints of a particular experiment (Gnaiger et al 2020). 
 

 This meta-analysis focuses on respiration of human dermal fibroblasts. The effect 
of donor age on mitochondrial respiratory control (Greco et al 2003) is contrasted with 
the specific pathophysiology of cell senescence (Hütter et al 2004) by distinguishing the 
repercussions of ET capacity versus coupling in oxidative phosphorylation (OXPHOS) on 
the efficiency of mitochondrial energy transformation. A large data set on neonatal 
normal human dermal fibroblasts (Yépez et al 2018) is compared with neonatal healthy 
control cells (Zdrazilova et al 2021). Bioenergetic cluster analysis (BCA) is introduced as 
a general framework for characterization of mitochondrial respiratory control in living 
cells. BCA can be extended to the analysis of all cell types and OXPHOS studied with a 
variety of SUIT protocols in isolated mitochondria, permeabilized cells and tissues, and 
tissue homogenates (Gnaiger 2020). Transparent and traceable evaluation of outliers is 
key in addressing the reproducibility crisis. Beyond mere statistical outlier detection, 
BCA identifies bioenergetic features of outliers as a diagnostic step towards solving 
underlying limitations causing the generation of outliers. 

 
2. Conceptual background 
 

2.1. Concept-driven normalization 
 

‘The challenges of measuring mitochondrial respiratory rate 
are matched by those of normalization’ (Gnaiger et al 2020). 

 

 The oxygen consumption rate OCR is frequently reported as O2 consumption in the 
experimental system (chamber or well) per unit of time, IO2 [mol∙s-1]. For quantitative 

comparison, respirometric data must be (1) represented as normalized quantities, (2) 
referred to defined respiratory states, and (3) expressed in identical units. 
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Normalization of cell respiration by cell count integrates ― thus does not distinguish 
between ― the effects of (1) cell size, (2) mitochondrial (mt) density, and (3) mt-quality 
on respiratory capacity (Renner et al 2003; Hütter et al 2004). Mitochondrial markers 
are used for normalization of respiration to obtain quantities that are independent of 
cell size and mt-density (Table 1). 
 

 A normalization can be represented as a Y/X plot. The reference is plotted on the x-
axis or abscissa as the independent variable X. The rate is plotted on the y-axis or 
ordinate as the dependent variable Y (Figure 1a). Frequently, neither reference nor rate 
are independent. A flux control ratio is obtained when the reference is a rate in a 
different state, independent of cell count, cell size and mitochondrial density. Flux 
control ratios and flux control efficiencies are normalizations calculated from rates 
measured in a sequence of respiratory states in a SUIT protocol (Gnaiger 2020). For 
example, a plot of ROUTINE respiration as a function of ET capacity represents the 
dimensionless R/E flux control ratio FCR. The reference rate (E) in a FCR is considered 
as an internal functional mt-marker mtE for the rate in any respiratory state i (Table 1), 
 

 𝐹𝐶𝑅 = 𝐽O2/𝑚𝑡𝐸  =
𝐼O2(state 𝑖)

𝐼O2(reference state)
   Eq. 1 

 

 The choice of an appropriate reference state is neither absolute nor entirely 
arbitrary and may be dictated by the research question. A numerically driven definition 
of the reference state as the maximum rate yields normalized flux control ratios in the 
range of 0 to 1. Conceptually, it is decisive to consider the intercept when the reference 
variable is extrapolated to zero (Figure 1). R and L depend on the ET capacity. At ET 
capacity E = 0, therefore, both R and L are zero by definition, in agreement with 
experimental evidence (see Results, Figures 7R and 8). LEAK respiration may 
theoretically decline to zero at positive E and R, which is observed empirically (see 
Results, Figures 7L and 11a). In a linear but not proportional function, 
 

 𝑅 =  𝑏 ∙ 𝐿 + 𝑎 Eq. 2 
 

the intercept a is equal to ROUTINE respiration when L is extrapolated to zero. 
Consequently, the slope b is the constant ratio, 
 

 𝑏 =
𝑅−𝑎

𝐿
 Eq. 3 

 

In contrast, R/L is neither a constant at variable R (Eq. 2) nor a concept-driven ratio, 
even if frequently applied ― compare the classical respiratory adenylate control ratio 
RCR ∼ P/L. OXPHOS capacity P is determined at kinetically saturating concentrations of 
ADP and inorganic phosphate which cannot be obtained in living cells but requires mt-
preparations (for definitions, see Gnaiger et al 2020). 
 

 The ratio of ROUTINE respiration and ET capacity is the R/E flux control ratio (Eq. 
1), simply related to the E-R reserve efficiency jE-R, as is the L/E flux control ratio related 
to the E-L coupling efficiency jE-L (Gnaiger 2020), 
 

 E-R reserve efficiency 𝑗𝐸−𝑅 =
𝐸−𝑅

𝐸
= 1 −

𝑅

𝐸
 Eq. 4a 

 

 E-L coupling efficiency 𝑗𝐸−𝐿 =
𝐸−𝐿

𝐸
= 1 −

𝐿

𝐸
 Eq. 4b 
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The E-R reserve efficiency is under physiological control by intermediary metabolism 
and cellular aerobic energy demand and is regulated by the E-L coupling efficiency. 
 

 The slope between O2 flow IO2 and the cell count (number of cells Nce [x]) in the 

chamber yields O2 flow per cell IO2/ce (Gnaiger et al 2020), 
 

 𝐼O2/ce  =
𝐼O2

𝑁ce
 [amol∙s-1∙x-1] Eq. 5 

 

On the other hand, the slope between IO2 and total cell size ― e.g. expressed as cell 
volume Vce [pL] in the chamber ― yields cell-volume specific O2 flux JO2/Vce, 
 

 𝐽O2/𝑉ce
 =

𝐼O2

𝑉ce
 [amol∙s-1∙pL-1] Eq. 6 

 

If Vce is varied by changing the number of identical cells in the chamber, the relation 
between IO2 and Vce is linear and proportional (zero intercept) in the absence of a 

crowding effect and within limits of linearity of the respirometric instrument. The cell 
volume Vce in the chamber is distinguished from the volume per cell VUce (volume per 

elementary unit Uce [x]; x is the unit of count) (Gnaiger 2020; 2021), 
 

 𝑉𝑈ce
 =

𝑉ce

𝑁ce
 [pL∙x-1] Eq. 7 

 

O2 flow IO2/ce (per cell) scales with VUce and total body mass according to allometric 

relations (Miettinen, Björklund 2017; Savage et al 2007). Different research questions 
are addressed by specific concept-driven normalizations, which are distinguished as 
extensive, specific, and kinetic or intensive (Table 1). 
 
Table 1. Concepts of normalization of O2 consumption. Relations of O2 consumption 
to reference attributes are categorized in the footnotes. 
 

Extensivea 

IO2 → IO2/ce 
Size-specificb 

IO2/ce → JO2/Quce 
mt-specifica 

IO2/ce → JO2/mtE 
Kinetic or intensivec 

cell count Nce volume per cell VUce mt-volume VUmt substrate concentration cX 
 

 
 

mass per cell MUce 
 

mt-membrane area mt-membrane potential ∆Ψp+ 
 

 
 

cell-marker enzyme 
 

mt-marker enzyme 
 

protonmotive force pmF 

 
 

cell protein 
 

reference rate protonmotive pressure ∆mΠp+ 
alinear; blinear or logarithmic; chyperbolic (cX), non-linear (∆Ψp+ and pmF), linear (∆mΠp+; 
Gnaiger 2020) 
 
 Even if information is available on cell volume and cell protein as markers of cell 
size, and citrate synthase CS activity is measured as a mt-marker (Renner et al 2003; 
Greco et al 2003; Hütter et al 2004), comparison with other studies (Yépez et al 2018) is 
restricted to normalization of respiration by cell count and marker-independent flux 
ratios and flux control efficiencies. Variability of results on attributes used for external 
normalization may override variability of measurements of respiratory rates. BCA and 
regression analysis of flux ratios avoid the consequence of discrepancies at more than 
one order of magnitude in interlaboratory tests on activities of respiratory Complexes, 
CS, and total protein mass (Gellerich et al 2004). 
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Figure 1. Inversion of axes in 
regression analysis. (a) and (b) 
Scheme of inverted regression 
analysis. ① Ordinary Y/X least-
squares regression; minimized 
residuals on Y (vertical full arrows; 
bY and aY). ② Abscissal regression 
with inverted axes; minimized 
residuals on X (vertical dotted 
arrows; βX and αX). ③ Ordinate 
projection of abscissal regression 
with inverted parameters, bX = 1/βX 
and aX = -αX/βX. ④ Mean regression 
line with parameters 𝑏̅ and 𝑎̅. 
Crossover point  between Y/X and 
X/Y regression lines (Table 2). (c) 
LEAK respiration IO2/ce of human 

skin fibroblasts HSF as a function of 
protein mass per cell M. Donor age 
1-42 y (diamonds), 59-103 y 
(squares). Thick dashed line: slope 
bY and intercept aY calculated from 
Y/X regression. Thin dashed line: 
slope bX and intercept aX calculated 
from abscissal X/Y regression in 
panel d. (d) Data from panel c with 

inverted axes, since respiration and protein mass are measurements with experimental 
error. (e) and (f) Proportional regressions (through the origin) consistent with the 
slopes in panel c bracketing the zero intercept, and with theoretical extrapolations to 
zero protein resulting in zero respiration. Proportional regression results in a higher 
value of r02 and a correspondingly smaller effect of axes inversion on the proportional 
slopes b0Y and b0X. Raw data: Greco et al (2003).  
 

2.2. Inverted regression analysis  
 

‘.. a visual inspection of a graphic showing the interaction between 
two variables is often a quicker and more reliable way to detect 
outliers in your data than a statistical test’ (Silver 2012). 

 

 In ordinary Y/X regression, the uncertainty (error) of the values of X is assumed to 
be negligible. In Eq. 5, for example, X can be varied accurately in a series of dilutions at 
non-random intervals, whereas Y is measured as O2 flow with experimental error. Then 
the ordinate intercept aY and slope bY are calculated to minimize the deviations or 
residuals of Y from the regression line, considering exclusively ordinate (vertical) 
deviations in Y in the Y/X plot. In many regression analyses ― such as Eq. 2 ―, however, 
both variables in X and Y are measurements with inherent errors. In this case it is 
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necessary to minimize residuals for both Y and X. To do so, the ordinate intercept aY and 
slope bY are calculated for the Y/X regression using ordinary least squares (Figure 1a), 
whereas the abscissal intercept αX and slope βX are obtained for the inverted X/Y 
regression using abscissal least squares (Figure 1b). To transpose the X/Y plot (Figure 
1b) to the Y/X plot, the inverted parameters aX and bX are calculated from αX and βX 
(Figure 1a), 
 

 inverted intercept: 𝑎𝑋 =
−𝛼𝑋

𝛽𝑋
 Eq. 8a 

 

 inverted slope: 𝑏𝑋 =
1

𝛽𝑋
 Eq. 8b 

 

Table 2. Quantities and symbols in inverted regression analysis. 
 

Quantity Symbol Definition Minimized residuals 

ordinate Y/X intercept on Y aY ordinary regression Y variable 
ordinate Y/X slope bY ordinary regression Y variable 
    

abscissal X/Y intercept on X αX abscissal regression X variable 
abscissal X/Y slope βX abscissal regression X variable 
    

inverted Y/X intercept on Y aX aX = -αX/βX X variable 
inverted Y/X slope bX bX = 1/βX X variable 
    

mean Y/X intercept on Y 𝑎̅ 𝑎̅ = (aY+aX)/2 Y and X variables 
mean Y/X slope 𝑏̅ 𝑏̅ = (bY+bX)/2 Y and X variables 
    

cross-over point on X X* 𝑋∗ =
𝑎𝑌 − 𝑎𝑋

𝑏𝑋 − 𝑏𝑌
  

cross-over point on Y Y* 𝑌∗ =
𝑎𝑌 ∙ 𝑏𝑋 − 𝑎𝑋 ∙ 𝑏𝑌

𝑏𝑋 − 𝑏𝑌
  

    

coefficient of determination r2 r2 = bY/bX = bY∙βX Y and X variables 
 

 In Y/X regression with errors in Y and X, intercept 𝑎̅ and slope 𝑏̅ are the means of 
the Y/X and X/Y regression parameters (Table 2). The ordinate intercept aY yields an 
overestimate and the slope bY an underestimate (Figure 1c and d). The mean intercept 𝑎̅ 
and mean slope 𝑏̅ minimize the residuals not only in the dependent variable Y but also 
in the independent variable X. This is in line with the concept of the coefficient of 
determination r2, which is independent of axis inversion. 
 

 Like r2, the inverted slope ratio bY/bX is always positive in the range of 0 to 1. In 
fact, these parameters are equal (Figure 2), 
 

 
𝑏𝑌

𝑏𝑋
= 𝑏𝑌 ∙ 𝛽𝑋 = 𝑟2 Eq. 9 

 

 Proportional regression ― known as regression through the origin ― is 
controversial (Eisenhauer 2003) and depends on (1) how close the data are distributed 
towards the zero intercept, (2) testing for aY>0 and αX>0 (or aX<0), and (3) a theoretical 
prediction that Y must be zero when X=0. These criteria are fulfilled, for example, in the 
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plot of LEAK respiration per cell as a function of protein mass per cell (Figure 1c to f). 
Proportional regression increases the value of r2 to r02 (using Excel), and thus 
diminishes the bias of the ordinate slope b0Y compared to the mean slope 𝑏̅0 (Figure 1e). 
The mean proportional slope 𝑏̅0 can be compared with the median of the individually 
normalized quantities. 𝑏̅0 = 16.5 amol∙s-1∙ng-1 (Figure 1e) is like the median protein-
specific O2 flux JO2/M = 16.9 amol∙s-1∙ng-1. 

 

Figure 2. Equality of the inverted 
slope ratio bY/bX and coefficient of 
determination r2. Empirical values 
from Figures 7, 8 and 11, where bY and 
bX are plotted as regression lines for 
visualization of the magnitude of r2. 
Diamonds are from O2 flow as a 
function of HSF cell mass (Figure 1 and 
6). Corresponding proportional r02 
calculated by Excel and b0Y/b0X are 
higher than r2. R­L is constant and 
independent of variations in E-L with 
near-zero r2 (Figure 11c).  
 
 Plots of bY and bX provide a direct 

graphical representation of the magnitude of r2 or r02 (Figure 1c and e). More advanced 
statistical methods are required for estimation of probabilities when considering data 
distribution with heteroscedasticity (Wilcox 2015). Without complete knowledge of the 
history of statistics it is impossible to say whether finding the equality of r2 and the 
inverted slope ratio (Figure 2) is an original discovery or a re-discovery of a neglected 
fundamental relationship. 
 

2.3. Outlier-skewness index 
 

 An outlier-skewness index OSI is defined for evaluation of the distribution of data 
sets with outliers including separate clusters or skewness in relation to a normal 
distribution with equivalence of the average and median. The OSI is derived from the 
Pearson 2 index of skewness PSI (Doane, Seward 2011) which relates the difference 
between average 𝑥̅ and median 𝑥̃ to the standard deviation SD, 
 

 P𝑆𝐼 =
𝑥̅−𝑥̃

SD
∙ 3 Eq. 10 

 

The outlier-skewness index OSI extends the PSI by introducing the absolute value of the 
arithmetic mean 𝑚̅,  
 

 𝑚̅ =
|𝑥̅+𝑥̃|

2
 Eq. 11  

 

for normalization, 
 

 O𝑆𝐼 =
𝑥̅−𝑥̃

𝑚̅  + SD
  =  

𝑥̅−𝑥̃

|𝑥̅+𝑥̃|/2  + SD
  Eq. 12 

 



 
 

 
MitoFit 2021.8  doi:10.26124/mitofit:2021-0008 

 

www.mitofit.org 9 
 

 At the limit of a zero value of 𝑚̅, the OSI equals the PSI (without the multiplication 
factor of 3). At high 𝑚̅ and small SD, the OSI approximates the difference between the 
average and the median normalized for 𝑚̅, (𝑥̅ − 𝑥̃)/𝑚̅. At positive OSI when 𝑥̅ >𝑥̃, 
skewed distribution may be shifted to a normal distribution by log-transformation 
(Table 3). μ and σ are the average (or median) and standard deviation of the log-
transformed data. The upper and lower ±σ boundaries are, 
 

 𝑢𝑝 =  exp(𝜇 + 𝜎) Eq. 13a 
 

 𝑙𝑜𝑤 =  exp(𝜇 − 𝜎) Eq. 13b 
 

Then σ is expressed on the natural scale as SDln, which yields comparability with SD of 
data sets analyzed without log-transformation, 
 

 SDln =  
𝑢𝑝−𝑙𝑜𝑤

2
 Eq. 14 

 

 Medians are invariant in the natural and logarithmic scale after log-natural re-
transformation. 

 
3. Results 
 

3.1. ROUTINE respiration and coupling control in living cells 
 

 Respiratory control in human fibroblasts is represented by four studies with 
different instrumental configurations (Tables 3 and 4). The ROUTINE state is defined as 
the near-physiological state of respiration R in living cells, without interference by 
externally applied inhibitors and uncouplers. R, L and E are O2 fluxes linked to the 
mitochondrial electron transfer system ETS and thus are corrected for Rox determined 
after inhibition of the ETS (Gnaiger 2020). 
 

 The effect of cell size on cell respiration is apparent when contrasting respiration 
normalized for cell count in young proliferating human foreskin fibroblasts YP-HFF and 
senescent human foreskin fibroblasts S-HFF with volumes per cell of 2.6 and 9.9 pL∙x-1, 
respectively (Figure 3a and b). The R-L net ROUTINE capacity and (R-L)/E control ratio 
consider LEAK respiration L as a bioenergetic baseline (Figure 3), above which electron 
transfer to O2 is available for oxidative phosphorylation of ADP to ATP, whereas L is 
related to the O2 requirement for maintaining the protonmotive force by compensation 
of proton leak and slip and cation cycling.  
 

 Respiration is compared in YP-HFF and normal human dermal fibroblasts NHDF 
(Figure 3a and c). The Seahorse XF Analyzer displays O2 consumption rates during 
consecutive time periods of 4-5 min as a data point separated by 2 to 4 min for 
reoxygenation (Wu et al 1997). Evaluation of the time periods differs according to 
respiratory state (Yépez et al 2018). After exclusion of outliers by bioenergetic cluster 
analysis (Section 3.3), ROUTINE respiration in R1 and R2 is 11 % and 3 % higher than in 
R3 (Figure 3c). LEAK respiration in L1, L2 and L3 is 23 %, 13 % and 6 % higher, 
respectively, than flow taken as the minimum in either L1, L2 or L3. ET capacity declines 
from E1 to E3 by 15 %. This illustrates the importance of clarification and 
standardization of data analysis of time intervals. Measurement of respiratory capacities 
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requires evaluation of steady states (Gnaiger 2001; Gnaiger et al 2020), achieved in the 
O2k by continuous monitoring of rate over time at 2-s data recording intervals, and 
steady-state sections are selected for calculation of numerical results (Figure 3d). 
 

Table 3. Respiration R, L and E corrected for baseline Rox, and Rox in fibroblast 
cell cultures used as controls. O2 flow normalized for cell count, 37 °C. 
 

Cell line  
 

ROUTINE R LEAK L ET capacity E baseline Rox 

Instrument [amol∙s-1∙x-1] [amol∙s-1∙x-1] [amol∙s-1∙x-1] [amol∙s-1∙x-1] 

YP-HFF1  median 𝑥̃ 39 15 109 8 

O2k 2 mL 
𝑥̅ ± SD 

𝑥̃±SD range 
38 ± 8 

31 to 47 
15 ± 4 a 

11 to 19 a 
112 ± 24 
85 to 133 

8 ± 3 
5 to 12 

n=12 OSI -0.02 0.04b 0.02 0.01 

HDF2 median 𝑥̃ 37 6 77 2 

O2k 0.5 mL 
𝑥̅ ± SD 

𝑥̃±SD range 
37 ± 7 

30 to 44 
6 ± 3 
4 to 9 

79 ± 14 
63 to 91 

2 ± 1 
0 to 3 

N=3 × n=4 OSI 0.00 -0.06 0.02 -0.01 

NHDF3 median 𝑥̃ 37 6 78 11 

XF96 𝑥̅ ± SD 37 ± 12 a 6 ± 3 a 78 ± 26 a 10 ± 5 

multiwell 𝑥̃±SD range 27 to 51 a 3 to 9 a 56 to 107 a 6 to 17 

n=2630 OSI 0.04c 0.05c 0.04c 0.02 

Y-HSF4 median 𝑥̃ 46 7 69  

1 to 42 years 𝑥̅ ± SD 49 ± 24 a 7 ± 4 a 71 ± 46 a  

Gilson 1.5 mL 𝑥̃±SD range 28 to 75 a 4 to 11 a 37 to 130 a  

N=13 OSI 0.11d 0.13d 0.12d  

A-HSF4,5  median 𝑥̃ 55 13 72  

59 to 103 years 𝑥̅ ± SD 60 ± 22 a 13 ± 7 a 77 ± 30 a  

Gilson 1.5 mL 𝑥̃±SD range 37 to 80 a 8 to 21 a 48 to 109 a  

N=24 OSI 0.12e 0.09e 0.10e  

1: Young proliferating human foreskin fibroblasts (Hütter et al 2004); no outliers. 
2: Neonatal and healthy patient-derived human skin fibroblasts (Zdrazilova et al 2021); N cell 

lines with n repeats per cell line, the cell lines were pooled; no outliers. 
3: Normal human dermal fibroblasts (Yépez et al 2018); 6.8 % outliers removed. 
4: Human skin-derived fibroblasts from young (Y-HSF) or aged donors (A-HSF) (Greco et al 

2003). The term ‘antimycin-sensitive’ respiration suggests that rates were baseline corrected 
for Rox. Results on Rox are not available; no outliers. 

5: 20.0 % outliers removed with E ≧ R. 
a: At outlier-skewness index OSI>0.03 (Eq. 12), data were log-transformed; average 𝑥̅ and SD re-

transformed to the linear scale (Eq. 14). 
b: log-transformation lowered the OSI to 0.02. 
c: log-transformation lowered the OSI to 0.00, -0.02 and 0.00, respectively. 
d: log-transformation lowered the OSI to 0.04, 0.06 and 0.02, respectively. 
e: log-transformation lowered the OSI to 0.07, 0.01 and 0.04, respectively. 
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Table 4. Flux control ratios and flux control efficiencies normalized for ET 
capacity. E’tot is the apparent ET capacity not corrected for Rox. For details see Table 3. 
 

Cell line 
 

ROUTINE net ROUTINE coupling efficiency baseline  

Instrument R/E (R-L) /E  (E-L)/E Rox/E’tot 

YP-HFF median 𝑥̃ 0.34 0.20 0.86 0.09 

O2k 2 mL 
𝑥̅ ± SD 

𝑥̃±SD range 
0.34 ± 0.02 
0.32 to 0.37 

0.20 ± 0.02 
0.19 to 0.22 

0.86 ± 0.02 
0.84 to 0.88 

0.07 ± 0.03 
0.06 to 0.12 

n=12 OSI 0.01 0.01 -0.00 -0.19 

HDF median 𝑥̃ 0.46 0.40 0.92 0.02 

O2k 0.5 mL 
𝑥̅ ± SD 

𝑥̃±SD range 
0.47 ± 0.04 

 0.42 to 0.50 
0.40 ± 0.03 
0.36 to 0.43 

0.93 ± 0.03 
0.89 to 0.96  

0.02 ± 0.02 
0.00 to 0.04 

N=3 × n=4 a OSI 0.02 0.00 0.00 -0.04 

NHDF median 𝑥̃ 0.47 0.40 0.93 0.12 

XF96 
𝑥̅ ± SD 

𝑥̃±SD range 
0.48 ± 0.08 
0.40 to 0.55 

0.40 ± 0.07 
0.33 to 0.47 

0.92 ± 0.03 
0.90 to 0.95 

0.12 ± 0.04 
0.08 to 0.16 

n=2630 OSI 0.01 0.01 -0.00 0.00 

Y-HSF median 𝑥̃ 0.71 0.58 0.90  

1 to 42 y 
Gilson 

𝑥̅ ± SD 

𝑥̃±SD range 
0.70 ± 0.12 
0.59 to 0.82 

0.58 ± 0.07 
0.51 to 0.66  

0.88 ± 0.08 
0.83 to 0.98 

 

N=14 b OSI -0.01 -0.01 -0.02  

A-HSF median 𝑥̃ 0.82 0.61 0.83  

59 to 103 y 
Gilson 

𝑥̅ ± SD 

𝑥̃±SD range 
0.78 ± 0.12 
0.69 to 0.94 

0.59 ± 0.08 
0.53 to 0.70 

0.81 ± 0.08 
0.75 to 0.91 

 

N=26 b OSI -0.04 -0.03 -0.02  

a: N cell lines with n repeats per cell line, the cell lines were pooled. 
b: N is higher than in Table 3 since flux control ratios and control efficiencies do not depend on 

reported protein mass. 
 

 For further comparison, ROUTINE respiration measured with the O2k in human 
fetal lung fibroblasts is 32±9 amol·s­1·x-1 (Djemek et al 2018), which corresponds to 
results for young proliferating HFF, HDF and NHDF cells (Table 3). In contrast, Kuffner 
et al (2020) report 18±1 and 37±2 “pmol/min/1000 cells” for ROUTINE respiration and 
ET capacity, respectively, in skin fibroblasts derived from young healthy controls and 
measured with the XFp Flux Analyzer (possibly not background-corrected for Rox). This 
converts to 309 and 617 amol·s-1·x-1 or eight times higher than in NHDF (Table 3). For 
conversion of units, see Tables 6 and 7 in Gnaiger et al (2020). 
 

 The outlier-skewness index OSI was >0.03 for R, L, and E in the large data set of 
NHDF, consistent with a log-transformation to obtain symmetric distribution for 
statistical analysis (Yépez et al 2018). In contrast, OSI<0.03 applied to respiration of 
HDF and most data on HFF, which were thus symmetrically distributed, as were the flux 
control ratios and flux control efficiencies of NHDF and HFF (Figure 4). Taken together, 
these results suggest that |OSI|>0.03 is the critical value indicative of unsymmetrically 
distributed data due to outliers, outlier clusters, or skewed distribution. 
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Figure 3. Respiration of fibroblasts with the coupling control protocol for living 
cells. ROUTINE respiration R, LEAK respiration L after inhibition of ATP synthase by 
oligomycin Omy, ET capacity E after uncoupling (U), and residual oxygen consumption 
Rox after inhibition of Complexes I and III by rotenone (Rot) and antimycin A (Ama). IkO2 

is the Rox-corrected catabolic O2 flow normalized for the cell count. (a) and (b) Scatter 
plots for young proliferating human foreskin fibroblasts YP-HFF and senescent human 
foreskin fibroblasts S-HFF measured in the O2k (calculated from raw data in Hütter et al 
2004). O2 flow normalized for cell count concentration in the stock suspension (1.0 ± 0.2 
Mx∙mL-1 and 0.20 ± 0.02 Mx∙mL­1 in YP-HFF and S-HFF, respectively) with complete 
volume replacement. Results of 12 individual chambers (open circles), medians (open 
diamonds) ±SD (bars). Omy at 1 µg/mL (1.25 µM). E is the maximum respiration 
obtained after multiple uncoupler titrations. Median R, L and E are highlighted by 
columns in panel b. (c) Scatter plot for normal human dermal fibroblasts NHDF 
measured in the XF96 (calculated from raw data in Yépez et al 2018). Three time 
intervals of respiration per respiratory state (R1, R2, R3; L1, L2, L3; etc.). Omy at 1 µM. 
Single uncoupler titration of 1 µM FCCP. Rox measured in the presence of Rot&Ama. O2 
flow normalized for the seed cell count (0.02 Mx per well). 2630 data points (dots) after 
elimination of outliers; medians (open diamonds) ± SDln of log-transformed data 
converted to the natural scale resulting in non-symmetrical boundaries (bars). (d) 
Continuous trace of respiration of S-HFF measured in the O2k. Stepwise uncoupler 
titration from 2.5 to 4 µM FCCP. DatLab file from Hütter et al (2004), modified from 
Gnaiger (2020). 
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Figure 4. Relation between the Pearson 2 index PSI and the outlier-skewness 
index OSI. Area ①: Symmetrical data distribution with similar average 𝑥̅ and median 𝑥̃ 
at |OSI|<0.03. Horizontal lines indicate |PSI|<0.3. ② Positive skewness, 𝑥̅ > 𝑥̃, 
suggesting log-transformation. ③ Negative skewness, 𝑥̅ < 𝑥̃. Open symbols and crosses: 
natural scale O2 flow. Closed symbols: log-transformed O2 flow. Crosses: flux ratios; 
most frequently symmetric without log-transformation. (a) HFF, HSF and HDF; LEAK L 
(open red squares) are more symmetric after log-transformation (full red squares). 
Crosses: only (R-L)/E in S-HFF (pink) and three ratios in HSF (dark red) are positive 
skewed. (b) NHDF; R, L and E are symmetric after log-transformation; open triangle 
(Rox) is negative skewed after log-transformation (closed triangle). Data from Tables 3 
and 4. 
 

3.2. Age- and senescence-related respiration in human fibroblasts 
 

 An age-related mitochondrial dysfunction in skin fibroblasts was linked to the 
decline in mitochondrial protein synthesis (Greco et al 2003). Fetal fibroblast samples 
are not included in the present meta-analyis. Fibroblast respiration expressed per cell 
shows a high variation throughout donor age (Figure 5a). Surprisingly, the variability is 
not reduced by normalization of respiration for protein mass per cell (Figure 5b). 
Protein mass per cell as an estimate of cell size shows an increasing scatter at age >50 y, 
which provides a rationale for splitting the data set into different age groups (Figure 5c). 
Although the coupling efficiency jE-L and R-L control efficiency jR-L are independent of 
normalization by protein mass, the scatter increases towards lower values at older age 
(Figure 5d). The E-R reserve efficiency jE-R is independent of age (not shown). 
 

 Although age group A-HSF (59-103 y) extends to larger cell size, plots of LEAK 
respiration per cell as a function of protein mass per cell are homolinear (Figure 1). 
ROUTINE respiration and ET capacity per cell, however, show a trend towards 
diminished increase with cell size in the age group A-HSF (59-103 y) compared to Y-HSF 
(1-42 y), suggesting two heterolinear clusters with large overlap (Figure 6a and b). The 
lower slope reduces the coupling efficiency jE-L = 1-L/E at older age by a diminished 
increase of E with increasing L relative to the young donors. The ratio of proportional 
slopes for R and E provides an estimate of the R/E flux control ratio, which is 100/174 = 
0.58 and 71/91 = 0.78 for Y- and A-HSF, respectively. Both values are lower than the 
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medians or averages calculated from the individual R/E ratios (Table 4). However, the 
E-L coupling efficiencies calculated from the mean proportional slopes (Figure 1e and 
6b) correspond to 𝑥̃ and 𝑥̅ of the individual coupling efficiencies, at jY = 1-16.5/174 = 
0.90 and jA = 1-16.5/91 = 0.82, for Y- and A-HSF, respectively (compare Table 4). The 
relevant questions are (1) the reproducibility of discriminating separate clusters and (2) 
the accuracy of the estimate of a ratio or slope. 

 

Figure 5. Human skin fibroblasts 
studied over the human donor 
age (based on data from Greco et 
al 2003). (a) O2 flow per cell; (b) O2 
flux per protein mass of the cell as a 
function of donor age. Rates R in the 
ROUTINE state, L in the oligomycin-
inhibited LEAK state, and E in the 
uncoupler-stimulated ET state. 
Neither representation reveals 
conclusive information on the effect 
of donor age on mitochondrial 
function. (c) Protein mass per cell. 
(d) E-L coupling efficiency jE-L (open 
symbols) and R-L control efficiency 
jR-L (closed symbols) as a function of 
age; the scatter increases in A-HSF. 
 

Figure 6. ROUTINE respiration (a) 
and ET capacity (b) as a function 
of cell size. LEAK respiration L (red 
line, full circles) inserted as a 
reference from Figure 1e. Y-HSF (full 
lines); A-HSF (dashed lines). Mean 
slopes of inverted linear least 
squares regression (thin regression 
lines extrapolated to zero) or 

proportional regression (through the origin; 𝑏̅0).  
 
 Young and aged HSF do not show separate clusters in plots of ROUTINE 
respiration/ET capacity (Figure 7aR). Although flux control ratios and control 
efficiencies are independent of normalization of O2 flow or O2 flux ― the same ratio is 
obtained for IO2(state i)/IO2(reference state) and JO2(state i)/JO2(reference state) (Eq. 1) 

―, the ranges of flows and fluxes change and the slope between the two states depends 
on the normalization. The dimensionless O2 consumption rate expressed per median ET 
capacity normalized for cell size (HSF; Figure 7c) reduces the range by 30 % compared 
to rates relative to the median ET capacity normalized for cell count (HSF; Figure 7b). 
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Figure 7. Respiratory control in human skin fibroblasts HSF (based on data from 
Greco et al 2003) and foreskin fibroblasts HFF (based on data from Hütter et al 
2004). Mean slopes of inverted least squares linear regressions (𝑏̅; thin regression lines 
extrapolated to zero) or proportional regressions (through the origin; 𝑏̅0; short 
regression lines). Numbers are slopes; numbers in parenthesis are linear or 
proportional r2. Y-HSF (full lines); A-HSF (dashed lines). YP-HFF (full lines); GA-HFF 
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(dotted lines); S-HFF (dashed lines). (a) O2 flow expressed per cell count [amol∙s-1∙x-1]. 
Identical axes within aR and within aL for direct comparison. The clusters of HFF 
indicate mainly the effect of the larger cell size of senescent cells S-HFF on O2 flow. (b) 
Dimensionless O2 rate expressed per median ET capacity expressed per cell, resulting in 
identical slopes as in panels a. For HSF the data distribution is identical as in panel a, 
since the common median for both age groups is used (the medians for each group are 
not different; Table 3). (c) Dimensionless O2 rate expressed per median ET capacity 
normalized for cell size. (R) ROUTINE respiration and ET capacity; axes ratios y/x fixed 
at 0.60. Age groups (HSF) do not show separate clusters in R and are combined in a 
single regression (dotted lines) indicating a possible nonlinearity, with a steeper slope 
from zero to low rates. (L) LEAK respiration and ET capacity; axes ratios y/x fixed at 
0.20. 
 
 Proliferating cells growing exponentially represent the standard cell culture 
conditions in many studies. Proliferating human foreskin fibroblasts (YP-HFF) have a 
cell volume of 2.6 ± 0.3 pL∙x-1 and are compared to senescent cells (S-HFF) which stop 
dividing and increase in volume per cell to 9.9 ± 0.9 pL∙x-1, whereas growth-arrested 
cells GA-HFF have a cell volume of 2.2 ± 0.2 pL∙x-1 (Hütter et al 2004). In a plot of 
ROUTINE respiration/ET capacity per cell, the small YP-HFF and large S-HFF form two 
apparently isolinear clusters on a common trend of R increasing with E (HFF; Figure 7a). 
Normalization by the median ET capacity of each cell type shifts their rates to 
comparable scales and reveals the heterolinearity of the clusters (HFF; Figure 7b). 
Normalization for cell volume has the same effect on representing the three cell types as 
heterolinear bioenergetic clusters (HFF; Figure 7c). The pattern of higher LEAK 
respiration in the senescent HFF and aged HSF cells is comparable (Figure 7L). Higher L, 
however, causes an increase of ROUTINE respiration indicative of uncoupling or 
dyscoupling in HFF, in contrast to the conserved R/E slope in A- and Y-HSF (Figure 7R). 
 

 The proportional slopes 𝑏̅0 between ROUTINE respiration and ET capacity (HFF; 
Figure 7R) are identical to the median of the R/E flux control ratio of 0.34 (mean 0.34 ± 
0.02 SD; Table 4) and 0.42 (mean 0.42 ± 0.05 SD) in YP-HFF and S-HFF, respectively. 
While the intercepts in the R/E plots are not different from zero, the corresponding L/E 
plots show a trend to negative intercepts and, therefore, for L to decline to zero at low E 
(HFF; Figure 7bL and cL). The same trend is seen in two separate studies of human 
dermal fibroblasts (Figure 8). 
 

3.3. Outlier identification by bioenergetic cluster analysis 
 

 HFF were studied with the 2-mL chambers of the O2k, whereas the 0.5-mL module 
was used for neonatal HDF (Tables 3 and 4) to reduce the number of cells required for 
respirometric measurements and comparison with parallel measurements in the 
Seahorse XF24 (Zdrazilova et al 2021). Neonatal NHDF cells are controls for fibroblasts 
from patients suspected of mitochondrial diseases, studied with the XF96 (Yépez et al 
2018). Respiration of NHDF and HDF measured in two different platforms are 
superimposed in Figure 8. No outliers are detected in the HDF study with the O2k. 
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Figure 8. NHDF and HDF 
fibroblast respiration in 
relation to electron 
transfer (ET) capacity. 
Normalization for seed 
cell count. Meta-analysis 
of raw data from Yépez et 
al (2018) measured in the 
XF96. n=2630 wells after 
elimination of 6.8 % 

outliers. Dashed lines are mean inverted linear regressions 𝑏̅, bY and bx. 𝑏̅0 is the mean 
proportional slope. Open circles: averages within plates (N=124, median 20 wells per 
plate). Superimposed data from Zdrazilova et al (2021) on three HDF cell lines (yellow 
diamonds, squares and triangles) measured in the 0.5 mL-volume O2k with four repeats 
each. Full yellow lines are mean inverted linear regressions. (a) ROUTINE flow baseline-
corrected for Rox as a function of E. Regression intercepts are not different from zero. 
(b) LEAK flow baseline-corrected for Rox as a function of E. NHDF: (min|L1, L2, L3|); 
averages (arrows) ± SD (dashed lines) calculated from log-transformed data. The 
proportional slopes  𝑏̅0 represent the R/E and L/E flux control ratios (compare Table 4). 
 

 The definition of outliers exerts a strong influence even on large data sets, must be 
considered carefully and be reported explicitly. Outlier identification provides a 
benchmark for BCA with transparent and traceable characterization beyond mere 
detection. Assays with missing data points (<3 measurements per respiratory state) are 
excluded from the present meta-analysis, which then contains n=2822 assays on NHDF. 
 

 Plots of ROUTINE respiration R as a function of ET capacity E show the time course 
of BCA from R1 to R3 (Figure 9R). At time periods R2 and R3 a distinct bioenergetic 
cluster RC2 appears of collapsed R (Figure 9R). Since R3 is used (Figure 3c), outlier 
cluster RC2 must be eliminated (BCA outlier level 3; see below). Inhibition of respiration 
by oligomycin occurs rapidly from R3 to L1. Two clusters are apparent in L1, with high L 
at low E in LC2. Cluster LC3 with even higher L crops up in L2 and L3. The minimum O2 
flow from L1 to L3 is used in the analysis, which eliminates the high LEAK rates of LC3 
(Figure 9L). ET capacity drops to zero in cluster EC2 appearing in E2 and E3 (Figure 9E). 
In contrast to selecting minimum values for LEAK and residual baseline states, the 
maximum measured ET capacity is selected. This eliminates the low-ET capacity cluster 
EC2. Edge effects do not remove the outlier clusters (excluding all rows A and H, and all 
columns 1 and 12 of the 96 well plate). 
 

 Physiological outlier level 1: Exclusion of one negative E-R, one negative R-L, and ― 
after baseline correction for Rox ― seven negative L. 
 

 BCA outlier level 2: Two heterolinear clusters LC1 and LC2 in the L/E plot (Figure 
10a) indicate that the L/E flux control ratio and E-L coupling efficiency (Eq. 4) differ in 
these clusters. Therefore, the cluster LC2 can be separated as lC2 by a threshold of low 
coupling efficiency, excluding 62 data with (E-L)/E < 0.8 (Figure 10b). In contrast, a plot 
of E-L coupling efficiency over L fails to discriminate separate clusters (Figure 10c). 
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Figure 9. Three consecutive time intervals of ROUTINE respiration (R1-R3), LEAK 
respiration (L1-L3), ET capacity (E1-E3), and baseline (ROX1-ROX3) as a function 
of maximum ET capacity in NHDF cells measured in the XF96. Raw data from Yépez 
et al (2018) normalized for the seed cell count and baseline-corrected for Rox. A 
bioenergetic cluster RC2 of low R appears in R2 and R3, arguing for using R1 instead of 
R3. A cluster LC2 of intermediate L in L2 and L3 is apparent in L1, which is not 
eliminated by selecting minimum values of L. Clusters of high L (LC3) and Rox (RoxC2) 
appear at time intervals 2 and 3, which are eliminated by using minimum values of L 
and Rox. The maximum ET capacity E is almost exclusively obtained in E1. EC2 with 
collapsed ET capacity appears in E2 and E3.  
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Figure 10. Bioenergetic cluster analysis for identification of outliers. Clusters RC 
and LC within time intervals (Figure 9) remain as clusters rC and lC after selection of 
time intervals. (a) L/E plot: heterolinear bioenergetic cluster LC2 with high L/E flux 
control ratio (Figure 9L) remains after selection of L = min|L1, L2, L3|. The cluster lC2 
from panel b is superimposed as red squares. (b) Cluster separation: dispersed 
bioenergetic cluster lC2 with low coupling efficiency threshold (E-L)/E < 0.8 is 
associated with low ET capacity. The core cluster lC1 indicates that E-L coupling 
efficiency remains constant over the large range of E, reflecting the proportional 
variation of L and E (panel a). (c) The plot of coupling efficiency as a function of LEAK 
respiration does not allow for cluster separation but indicates increased L in addition to 
lower E as causes for the low-efficiency cluster lC2 in panel b. (d) R/E plot: heterolinear 
bioenergetic cluster RC2 with low R/E flux control ratio (compare Figure 9R). The lC2 
cluster (red squares) is indistinguishable from the core cluster RC1. The cluster rC2 
from panel e is superimposed as green diamonds. (e) Cluster separation: dispersed 
bioenergetic cluster rC2 with a threshold at low net R/E control ratio (R-L)/E < 0.04, 
separate from the bulk data but distributed across ET capacities. Cluster lC2 from panel 
b is superimposed as red squares, separating rC1 and rC2 even more distinctly. In 
contrast, the rC2 cluster (green diamonds) is indistinguishable from lC1 in panel b. Only 
two data points overlap in the rC2 and lC2 cluster. (f) The plot of net R-L control ratio 
over R reveals that low R independent of variation in E causes the low R-L control ratio 
in cluster rC2. Taken together, (R-L)/E < 0.2 is eliminated (except for three data points) 
by these two outlier clusters. 
 

 BCA outlier level 3: Whereas R1 avoids the cluster RC2 (Figure 9R), selecting R1 as 
the indicator of ROUTINE respiration would neglect the gradual decline of R in R2 and 
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R3 (Figure 3c). R3 is used in line with the original publication. The heterolinear cluster 
RC2 in the R/E plot (Figure 10d) can be separated as rC2 by (R-L)/E < 0.04 with 115 
outliers (Figure 10e). Elimination of rC2 removes the spurious clusters RC2, LC3, EC2, 
and RoxC2 (Figure 9). This outlier cluster lacks any scope for aerobic ATP production ― 
with collapsed net ROUTINE respiration R-L (rC2 in Figure 10f) ― but shows a normal 
range of ET capacities measured subsequently in the coupling control protocol (Figure 
9E1 and 10e). Only two data points belong to both outlier clusters lC2 and rC2, hence 
175 data are eliminated for lC2 and rC2. lC2 is linked only to LC2 (Figure 9L).  
 

 Statistical outlier level 4: For the average ± 5∙SDln, all lower boundaries were below 
zero, and the upper boundaries were 98.4, 19.9 and 207 for R, L, and E, respectively, 
excluding 8 outliers (4 for R; 4 for L; 0 for E). This results in a total of 6.8 % outliers out 
of 2822 data, with n=2630 data remaining for final analysis as presented in Figure 8. 
 
3.4. Low coupling efficiency: dyscoupling and dyscapacity 
 

 The drivers of ROUTINE respiration are (1) the demand for coupled energy 
transformation in OXPHOS and (2) uncoupling or dyscoupling. Uncoupler titrations 
initiated in the ROUTINE state stimulate respiration progressively. Similarly, ROUTINE 
respiration is increased by intrinsic physiological uncoupling or pathological 
dyscoupling if LEAK respiration is increased at constant ET capacity. This is the case in 
senescent cells (dyscoupling), which have lower E-L coupling efficiencies compared to 
young proliferating and growth-arrested fibroblasts, as discussed by Hütter et al (2004) 
(HFF; higher L/E slope in Figure 7L). 
 

 The coupling efficiency (E-L)/E (Eq. 4) declines due to (1) increasing LEAK 
respiration at constant E, or (2) decreasing ET capacity relative to L. These dysfunctions 
are linked to different OXPHOS modules and are distinguished as dyscoupling at reduced 
phosphorylation (transmembrane proton leak and slip) at a given O2 consumption rate, 
and dyscapacity at reduced oxidation (enzymatic defects of the electron transfer 
system). Relationships between the components of the E-L coupling efficiency and their 
effects on ROUTINE respiration are outlined in the bioenergetic cluster analysis of living 
cells: 
 

 (a) ROUTINE respiration increases linearly as a function of LEAK respiration in all 
fibroblast cell lines, but with different R/L slopes and intercepts >0 (Figure 11.a). HFF 
form isolinear clusters (Figure 11.a2). S-HFF are not only more dyscoupled compared to 
young cells ― as seen by increased LEAK respiration relative to Emedian ― but 
compensate the lower coupling efficiency by the proportionally increased ROUTINE 
respiration, thus dissipating more energy to maintain a constant netR/E control ratio 
(R-L)/E. This is the mechanistic interpretation of overlapping homolinear clusters, 
where rates increase on a common regression line from young growth-arrested GA-, to 
young proliferating YP-, and senescent S-HFF cells (Figure 11.a2). 
 

 (b) The difference R-L is the net ROUTINE capacity netR (vertical arrows in Figure 
11.a), which is the physiological rate of electron transfer potentially coupled to ATP 
production. netR increases proportionally with E (Figure 11.b). The proportional slope 
𝑏̅0 and slopes bY and bX can be compared with the 𝑥̃±SD ranges of (R-L)/E in Table 4.  
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Figure 11. Bioenergetic cluster analysis: compensatory control of ROUTINE 
respiration R by LEAK respiration L maintaining a constant R-L net control ratio at 
declining coupling efficiency. (a) Linear increase of R as a function of L, normalized 
for Emedian (O2 flow per cell). Positive intercepts of R at zero L. Vertical arrows indicate 
the difference R-L. (b) Proportional increase of net ROUTINE capacity R-L as a function 
of E, normalized for Emedian (O2 flow per cell). Subtraction of L from R yields net 
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ROUTINE respiration which is available for ATP production. The proportional slopes  𝑏̅0 
are comparable with the means of (R-L)/E (Table 4). (c) Constant (R-L)/E net control 
ratio independent of E-L coupling efficiency. (R-L)/E remains constant and independent 
of coupling efficiency, when dyscoupling or uncoupling is compensated for by 
stimulation of ROUTINE respiration at constant E, or when R-L decline proportionally 
with diminished ET capacity at constant L. (1) Aging and human skin fibroblasts (HSF; 
Gilson 1.5-mL chamber; Greco et al 2003). For comparison, data points for HFF and HDF 
are superimposed from panels 2 and 3 since scales are different in panel 1 from panels 
2 to 4. (2) Senescent (S), young proliferating (YP), and young growth-arrested (GA) 
human foreskin fibroblasts (HFF; O2k 2 mL-chamber; Hütter et al 2004). Normalization 
for Emedian in each cell type. (3) Human dermal fibroblasts (HDF; O2k 0.5 mL-chamber; 
Zdrazilova et al 2021). (4) Normal human dermal fibroblasts (NHDF, XF96; Yépez et al 
2018). Black dots and circles: individual wells and averages within plates without 
outliers. Outlier clusters lC2 (jE-L declines to 0.53) and rC2 as defined in Figures 10b and 
e, respectively. In panel a4, the slope and intercept are 1.04 and 0.00 in rC2, therefore 
R∼L. Normalization for Emedian in the total data set, since clusters lC2 and rC2 are 
separated by BCA a posteriori. 
 

 (c) A proportional dependence of netR on E implies that the net control ratio (R-
L)/E is regulated at a narrow level despite of variable E-L coupling efficiency (Figure 
11.c). Comparison of neonatal HDF (O2k) and NHDF (XF96) control groups indicates a 
similar narrow range of coupling efficiency, but high noise in the net control ratio (R-
L)/E of NHDF (Figure 11.c3 and 11.c4). In another O2k study, the coupling efficiency 
varies between 0.90 and 0.97 in human dermal fibroblasts from young to old people, 
whereas the respiratory net control ratio (R-L)/E is constant in the narrow range from 
0.23 to 0.26 (calculated from Kozieł et al 2011). A wide scatter on both axes may 
indicate instrumental noise (Figure 11.c4). 
 

 Respiratory capacity per cell changes at constant mitochondrial quality as a 
function of mitochondrial content per cell, reflected by constant flux control ratios and 
E-L coupling efficiency. In the coupling control protocol of living cells, ET capacity is the 
most difficult attribute to be measured accurately. Independent of R and L, E may be 
underestimated due to inhibition of E by oligomycin (Doerrier et al 2018) or failure to 
titrate optimal uncoupler concentrations (Steinlechner et al 1996; Gnaiger 2008). Then 
the coupling efficiency jE-L declines at constant L (Zdrazilova et al 2021). Variation of E 
and netE = E-L independent of L results in a hyperbolic function of jE-L = netE/E in the 
dyscapacity model (Figure 12a),  
 

 𝑗𝐸−𝐿 =
𝑗𝑛𝑒𝑡𝐸max∙𝑛𝑒𝑡𝐸

𝑛𝑒𝑡𝐸50+𝑛𝑒𝑡𝐸
 Eq. 15 

 

where the maximum coupling efficiency jnetEmax equals 1 by definition. The decline of jE-L 
to 0.5 is defined by netE50 = L as required in Eq. 15 (netE50+netE = E) to satisfy Eq. 4. 
Artificially low values of E are detected as physiological outliers if R<E. The continuous 
pattern of such physiological HSF outliers in the total HSF data set suggests that the 
lower coupling efficiency in fibroblasts from aged donors (Table 4) is not due to 
dyscoupling but is rather caused by declining E relative to a more stable L according to 
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the hyperbolic dyscapacity model (Figure 12b). This conclusion is supported by the 
isolinear dependence of L on protein mass per cell in A-HSF and Y-HSF (Figure 1) as 
opposed to the lower slopes of R and E in A-HSF than Y-HSF (Figure 6). In contrast, 
coupling efficiencies jE-L differ between young and senescent HFF according to the 
dyscoupling model (Figure 12c). However, jE-L is constant in each cell type despite of 
variation of ET capacity, suggesting that although mitochondrial quality differs between 
cell types with different jE-L, it is maintained in each cell type when mitochondrial 
contents change (preserved mt-quality model; Figure 12c). 
 

Figure 12. Coupling and reserve efficiency at varying ET capacity. (a) Models: ⓪ 
Reference state at zero inhibition of E = E0; (E-L)/E = 0.9; ⓿ (E-R)/E = 0.55. ⓪→③ and 
⓿→❸ ET dyscapacity: decline of E and R at constant L. Hyperbolic dependence of jE-L 
on netE and jE-R on netR=(E-R)/E0. ⓪→① Coupling efficiency is insensitive to inhibition 
of E, declining from 0.9 to 0.75 when E is inhibited by 60 % to E/E0 = 0.4. ② Decline of 
jE-L by 50 % at E/E0 = 2∙L/E0. ③ and ❸ Zero coupling and reserve efficiency at the 
threshold E/E0 = L/E0 and E/E0 = R/E0, respectively. Negative efficiencies are artificial 
physiological outliers. ④ and ❹ Dyscoupling: increasing L and declining coupling and 
reserve efficiency at constant E. ⑤ and ❺ Preserved mt-quality: constant coupling and 
reserve efficiency at proportional decline of E, L and R due to lower mt-content per cell. 
(b) HSF: hyperbolic fit (excluding 6 physiological outliers with E-R < 0; full red squares) 
in line with the dyscapacity model with declining E at constant L. An inhibitory effect on 
E by the high oligomycin concentration cannot be excluded. The mean L/Emedian is 0.17 
as estimate of E/E0 = L/E0 ③ in agreement with the hyperbolic fit. jE-R does not follow 
the dyscapacity model. Asymmetry of experimental artefacts results in underestimation 
but not overestimation of E, which causes low apparent ET capacity even above the 
physiological outlier detection limit ❸; variability of high ET at constant mitochondrial 
quality leads to a plateau of jE-R. (c) HFF and HDF (open symbols) and NHDF (dots): 
different coupling efficiencies between cell lines (dyscoupling model ④) but 
independence of jE-L within cell lines at variable E expressed relative to the median E for 
each cell line. Horizontal linear regressions indicate a proportional change of L and E at 
variable mitochondrial content in line with the preserved mt-quality model ⑤, 
supported by constant jE-R within each cell line (not shown). The alternative hyperbolic 
dyscapacity model (dashed line) fitted through the BCA outlier cluster lC2 (Figure 11.4) 
with variable underestimation of E when L remains constant at 0.21 according to the 
hyperbolic fit. The mean L/Emedian is 0.22 ③ for the data in the outlier cluster lC2. 
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 Outlier cluster lC2 in NHDF is identified by BCA at low ET capacity (Figure 10b) 
and conforms to the dyscapacity model (Figure 12c). Coupling efficiencies are identical 
in HDF and NHDF (Figure 12c; excluding outliers). When coupling efficiency is 
maintained in a narrow range (Figure 11.c3 and c4), all respiratory states in the 
coupling control protocol vary in direct proportion (constant quality model). Then 
variability of O2 flow per cell may be caused by physiological variations of mitochondrial 
content per cell due to (1) different cell size and (2) different mt-densities. Experimental 
and instrumental causes are errors in (3) cell counting; (4) titration of cells into the 
respirometric chamber; (5) volume calibration of the experimental chambers; and (6) 
estimation of variable fractions of cells outside of the closed configuration of a well. 

 
4. Discussion 
 

 Respiratory control in human fibroblasts is compared quantitatively in a meta-
analysis of data published by four different laboratories using four different 
respirometric designs. All results are expressed in SI units (Gnaiger et al 2020). 
Normalization of oxygen consumption rates as O2 flow per cell has limitations 
particularly when cell size is variable. But cell count is the only common denominator 
across these studies.  
 

 Direct comparability of different cell cultures is limited if there are differences in 
(1) the sources and sizes of cells, (2) culture media and culture conditions, (3) passage 
number after thaw and confluence state before harvesting, (4) respirometric platforms 
with suspended or adherent cells, (5) incubation conditions and titration regimes, and 
(6) cell counters (Tables 3 and 4; Figure 3). Fibroblast respiration using commercially 
available control cells (HDF and NHDF) measured in the O2k with 0.5-mL chamber 
volume (Zdrazilova et al 2021) and XF96 (Yépez et al 2018) are comparable (Figure 8) 
based on (1) a carefully designed statistical experimental regime and explicit outlier 
detection strategies, (2) optimization of oligomycin and uncoupler concentrations by 
multiple titrations or separate control experiments, (3) baseline correction for residual 
oxygen consumption, and (4) normalization and expression of results in standardized 
units. The two platforms follow different strategies: high-resolution HRR in a limited 
number of diffusion-tight chambers versus high throughput in multi-well plates with 
high background effects due to O2 diffusion into semi-closed chambers. Yépez et al 
(2018) suggest 12 wells are required as technical repeats per experimental arm and 
recommend using three plates for a resolution of 10 to 15 % differences. The between-
plate variability is higher than between-well variation on a single plate, hence a control 
group should be included on each plate. Background effects are measured in parallel in 
four calibration wells in the XF96, whereas instrumental background tests are 
performed without sample in each chamber of the O2k. With 7 % outliers (present XF96 
re-analysis after elimination of incomplete data sets) to 17 % outliers (Yépez et al 2018; 
outliers are not addressed by Zhang et al 2021) and 12 repeats, 6 experimental groups 
and one control can be included in each plate. This compromises high throughput. HRR 
does not support high throughput. But HRR minimizes outliers and adds quality control 
and flexibility in terms of titration regimes in the O2k. 
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 Several studies of cell respiration are limited by the low number of independent 
replica N and technical repeats n. The objective evaluation and reporting of outliers 
represent a hot topic in the reproducibility crisis (Ulrich, Miller 2020). Bioenergetic 
cluster analysis provides a concept-driven graphical approach, which visualizes clusters 
of data based on bioenergetic functional relationships for the characterization of 
experimental groups (Figures 7, 8 and 11) or outliers (Figures 9 and 10). Compared to 
the debated terminology on statistical significance related to p-values (Amrhein et al 
2019; Curran-Everett 2020), BCA expands the question about differences of data sets. 
Are clusters of data distributed along an identical linear or non-linear regression line of 
functional correspondence? Such isolinear clusters are separated by variations in the 
extent of a quantity that correlates with the rate (Figure 11a2). In contrast, heterolinear 
clusters fall on different regression lines (Figures 7 and 12c). This provides a necessary 
and sufficient proof of qualitative changes in the control of flux, such as dyscoupling that 
causes an increase of L (senescence) or dyscapacity that leads to low E and R (aging). 
Dispersed clusters are clouds of data separated by a critical threshold value, which may 
be achieved by selecting a specific normalization (Figure 10). 
 

 Hypothesis testing by conventional statistics refers frequently to the concept of 
significance. This paradigm is faced with the claim that ‘inferences should be scientific, 
and that goes far beyond the merely statistical’ (Amrhein et al 2019). Integration of 
fundamental bioenergetic concepts into BCA (Gnaiger 2020) takes statistical analyses to 
a higher level of heuristics (Kahnemann 2011) for finding answers to scientific 
questions, compared to mere black-box dichotomization by frequentist or Bayesian 
statistics (Yépez et al 2018; Zhang et al 2021). Concept-driven normalization in BCA 
considers regression parameters within separate clusters. BCA-linked evaluation of the 
corresponding slopes and intercepts help in interpreting the linear functions (Figure 
11). The slope of a proportional relationship through the origin represents the 
dimensionless flux control ratio. Figures 7a to c represent R/E and L/E plots. Variation 
of normalizations on the Y/X axes reveal bioenergetic clusters indicative of different 
features of mitochondrial respiratory control distinguishing these cell types. (a) O2 flow 
per cell separates clusters with low and high O2 flow due to the larger cell size in S-HFF. 
(b) O2 consumption rates expressed per median ET capacity in each cell type shift the 
rates to numerically comparable scales and thus emphasize more visibly the 
heterolinear nature of the clusters and reveal uncoupling or dyscoupling of oxidative 
phosphorylation as the causes of different mechanisms of mt-respiratory control. 
Importantly, using the median respiratory capacity of the reference state on both axes 
does not depend on additional measurements of cell size, as shown by (c) comparison 
with normalization by cell volume or cell protein mass.  

 

 The variability of respiration in a cultured cell line is a dominant biological factor, 
superimposed by experimental errors. Respirometry and cell counting differ across 
laboratories. The variability introduced into respirometric results by the cell count is 
eliminated by (1) internal normalization as flux control ratios and flux control 
efficiencies, and (2) bioenergetic cluster analysis BCA with graphical representation of 
the relationship of O2 consumption rates in respiratory states induced in the coupling 
control protocol. From the perspective of respirometry, internal normalization 
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eliminates errors of external attributes, such as cell count, cell protein mass, or marker 
enzyme activities. These provide specific additional information but may introduce 
more noise into respiratory data and increase biases between laboratories. By concept-
driven internal normalization and regression analysis, higher resolution and greater 
information are gained on respiratory control patterns visualized by BCA. Taken 
together, BCA provides new insights into the interplay between diminishing electron 
transfer capacity and dyscoupling, which are in the numerator and denominator of E-L 
coupling efficiency. Complementary to conventional statistics, BCA reveals patterns of 
respiratory control in experimental or diagnostic groups. BCA is independent of 
respirometric methods and thus provides a general tool for evaluation of different 
instruments (Zdrazilova et al 2021). 

 
5. Conclusions 
 

1. Results on cell respiration are comparable only if experiments refer to accurately 
defined steady states. Rates should be stable over experimental periods of time in 
optimized respiration media supporting physiological fuel substrate supply to living 
cells preventing exhaustion of endogenous substrates. Concentrations of inhibitors 
and uncouplers must be titrated carefully to avoid inhibitory side effects, e.g. 
inhibition of ET capacity by oligomycin or by inadequate uncoupler concentrations. 

2. Residual oxygen consumption Rox measured after inhibition of mitochondrial 
electron transfer may include chamber- or well-specific instrumental background 
effects. Corresponding baseline corrections of respiratory rates (R, L, E) eliminate 
such experimental artefacts. 

3. Rates of cell respiration are expressed in generally accepted SI units and are 
normalized for cell count, cell size, or mitochondrial markers for comparability of 
results across projects, laboratories, and instrumental platforms. This encourages 
evaluation of replicability and extension of validated reference databases. 

4. Normalization of respiratory rates for external markers adds valuable information. 
But normalization ― e.g. by CS activity ― may introduce noise into respiratory 
results, and bias particularly between laboratories. 

5. Internal respiratory markers use O2 consumption rates in a reference state for 
normalization. This yields flux control ratios FCR and flux control efficiencies j 
independent of any externally measured attributes of the sample. Then noise is 
typically lower. But the cost is entailed of reduced information compared with O2 
flow IO2 per cell and O2 flux JO2 per cell size or per mt-elementary unit. An extension 

of the FCR concept is normalization by the median reference flux of a data set. 
6. Irrespective of the chosen normalization, data obtained from SUIT protocols may be 

presented in conventional scatter plots where connections between data points are 
difficult to be shown. Rates measured in sequential respiratory states are connected 
within any single assay. Bioenergetic cluster analysis BCA represents selected data 
pairs as Y/X diagrams to identify functional relationships, e.g. between L and R. Y/X 
diagrams reveal clusters and data distribution more clearly than discriminatory 
statistical analyses. Proportional slopes through the origin are equivalent to FCR. 
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7. Ordinary regression analysis leads to a bias of underestimation of the slope and 
overestimation of the intercept if variables Y and X are measurements with error. 
Inverted regression analysis accounts for errors of variables on both axes. The 
coefficient of determination r2 equals the slope ratio of inverted regressions. 

8. The outlier-skewness index provides a guideline for outlier detection or 
characterization of asymmetrically distributed data sets. Positively skewed data 
should be log-transformed for calculation of SD and p-values. 

9. A reasonable ‘call for the entire concept of statistical significance to be abandoned’ 
(Amrhein et al 2019) should be considered. Therefore, asterisks and binary 
inequalities ― *p < 0.05, **p < 0.005 ― are eliminated. Clusters in BCA may appear 
objectively and convincingly, in which case p-values add no information. 

10. BCA can be applied to small and large data sets for distinguishing isolinear, 
heterolinear and dispersed clusters. At the limit, however, a cluster of a large data 
set appears as a single but possibly unidentified outlier in a small data set. 
Physiological outliers ― such as E<R or L<0 ― are recognized in any data set. Outlier 
clusters are identified by BCA in terms of specific dysfunctions, providing a basis for 
analyzing and finally minimizing the factors causing errors. Isolinear or heterolinear 
clusters indicate distinct mechanisms of mitochondrial dysfunction or metabolic 
reprogramming. 

 
6. Methods 
 

6.1. Human skin fibroblasts: HSF 
 

 Data were re-analyzed from Greco et al (2003), where the sources of cells and 
experimental conditions are described. The donor age spans from 1 to 103 years for 
mostly forearm or upper arm fibroblasts from cell repositories or biopsies. 
Respirometry was performed after two to three passages, trypsinizing exponentially 
growing cells, incubation at cell concentrations of 1.5∙106 to 3∙106 x/mL in Tris-based 
Mg2+-Ca2+-deficient medium (0.137 M NaCl, 5 mM KCl, 0.7 Na2HPO4, 25 mM Tris-HCl, pH 
7.4), and respirometry in a 1.5-mL water-jacketed Gilson chamber using YSI 
polarographic oxygen sensors. Omy was used at a high concentration of 5 µg/mL (6.25 
µM), which needs testing for inhibitory effects on ET capacity. The uncoupler 
dinitrophenol was titrated stepwise from 67-93 µM up to maximum O2 consumption 
rates. ET was inhibited by 20 nM antimycin A (Greco et al 2003). 
 

6.2. Human foreskin fibroblasts: HFF 
 

 Data were re-analyzed from Hütter et al (2004). Respirometric measurements 
were performed in 2.0-mL chambers of four O2k instruments (Oxygraph-2k; Oroboros 
Instruments, Innsbruck, Austria), with Dulbecco’s modified Eagle’s medium DMEM 
supplemented with penicillin/streptomycin and 10 % (v/v) fetal calf serum, containing 
substrates for cellular energy metabolism, such as glucose (5 mM), pyruvate (1 mM) and 
L-glutamine (4 mM). Pre-experiments in two to four chambers each of young 
proliferating human foreskin fibroblasts (YP-HFF; passage 13) and senescent cells (S-
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HFF; passage 28) were not included in the experimental design. For each cell line, six 
O2k assays were performed in parallel chambers with cells obtained from separate 
culture plates, repeated on two different days several months apart (N = 2 independent 
replica; total n = 12 assays). No outliers were removed. 
 

 Young growth-arrested fibroblasts (GA-HFF; passage 13) were measured on a 
single day in six chambers, where one chamber was discarded due to formation of a gas 
bubble in the medium. Medians and means were not different (except for LEAK 
respiration in YP-HFF and GA-HFF with OSI of 0.039 and 0.073; the average |OSI| was 
0.024 for R, L, and E in the three cell lines). Similarly, the average |OSI| was 0.017 for 
R/E flux control ratios, (R-L)/E and (E-L)/E control ratios. Thus log-transformation was 
not required. 
 

 The adjustment of the range in the axes of the plots in Figure 7 result in the 
graphical appearance of the variability of respiration relative to average or median O2 
flow. To remove the somewhat arbitrary scaling of the axes, respiration is divided by the 
median obtained in each respiratory state, and the relative O2 fluxes are plotted at 
identical scales of 1.0 ± 0.6 in Figure 13. This illustrates quantitatively the dependence 
of the variability on the mean. The coefficient of variation (approximated as SD/mean) 
ranges from 0.20 to 0.31. 
 

Figure 13. HFF fibroblast 
respiration in relation to 
electron transfer (ET) 
capacity. O2 flow normalized 
for the median in each 
respiratory state. Symbols × 
indicate experiments on day 1, 
open symbols on day 2. 
Medians (arrows) ± SD 
(dashed lines; ±20 % to 30 %), 
at a range of ±40 % to ±60 %. 
(a-b) Young proliferating cells 
YP-HFF. (c-d) Senescent cells 
S-HFF. For further details, see 
Figure 7. 
 
 
 
 

 

 Residual oxygen consumption Rox tends to be lower on the first compared to the 
second experimental day by about 10 amol∙s-1∙x-1 (not shown). Conversely, Rox-
corrected O2 flow (R, L, and E) shows a trend towards higher values on day 1. These 
differences are proportional and, therefore, are not explained by the relatively small 
additive effect of Rox correction but rather reflect cell physiology (Figure 13). 
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6.3. Human dermal fibroblasts: HDF and NHDF 
 

 Raw data on commercial cell lines of neonatal human dermal fibroblast HDF and 
one cell line from a nonmitochondrial patient at age of 5 months are available in 
(Zdrazilova et al 2021). Cells were cultivated in DMEM with 25 mM glucose and 
measured (passage 13 to 15) on three days in 0.5-mL O2k chambers with 375000 cells 
in DMEM (5 mM glucose, 2 mM pyruvate and 3.9 mM glutamate; Zdrazilova et al 2021). 
 

 Raw data on respiration of normal human dermal fibroblasts NHDF are listed in 
Yépez et al (2018). O2 flow per well of the 96-well Seahorse XF96 Analyzer (Agilent, 
Santa Clara, USA) measured in bicarbonate-free DMEM is transformed into SI units 
[pmol∙s-1]. Flow per NHDF cell [amol∙s-1∙x-1] is normalized for seeded cell count of 20000 
cells. In contrast to the continuous traces of respiration provided by DatLab (O2k 
software; Figure 3d), the Seahorse software restricts time resolution by calculating 
respiration at consecutive time intervals separated by reoxygenations. ROUTINE 
respiration declines over time towards a steady state at R3, whereas ET capacity 
becomes progressively inhibited after stimulation by a single dose of uncoupler (Figure 
3c). This time dependence provides a physiological argument against the focus on the 
‘average behavior’ of time intervals incorporated into the statistical analysis of Zhang et 
al (2021). Log-transformation is recommended for statistical evaluation due to skewed 
data distribution (Yépez et al 2018). Indeed, |OSI| averaged 0.043 for the natural values 
of R, L, and E before outlier removal, and was >0.035 for each state after outlier removal. 
Medians and standard deviations of data sets expressed on the natural and log-
transformed scale are then compared after re-transformation to the natural scale. For 
the logarithmic transformed data and expression of μ and σ as 𝑥̅ or 𝑥̃ and SDln on the 
natural scale (Eq. 14), the corresponding |OSI| was <0.03 (average 0.009). |OSI| was 
<0.02 (average 0.008) for R/E, (R-L)/E, and (E-L)/E without logarithmic transformation. 
 

Figure 14. NHDF seed 
cell count versus final 
cell count in the XF96. 
Open circles: averages 
within plates (N=124). 
Dots: wells (n=2627). 
(a) Final cell count 
plotted over serial 
sample number. Red 
squares: cluster lC2 (E-

L)/E<0.8 (Figure 10a,b), clustered in assays early in the sample series n and correlating 
with final cell counts that are lower than the seed cell count. Green diamonds: 
superimposed cluster rC2 (R-L)/E<0.04 (Figure 10d,e), evenly distributed across serial 
samples, but consistently appearing in two (47 plates) to three adjacent wells (6 plates). 
(b) Respiration R* normalized for final cell count versus R normalized for seed cell 
count after removal of outliers. Lower R* (R* = 0.72∙R) is due to normalization by the 
final cell count N* which is 1.5 times higher than the seed cell count. Comparison of dots 
(wells) and circles (plates) indicates scatter between wells. 
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 Two strategies are available for normalization for cell count. (1) The cell count is 
determined for seeding cells to the wells or injection of cells into the experimental 
chamber, abbreviated as ‘seed count’. (2) The cell count is determined from the sample 
obtained from the well or experimental chamber, abbreviated as ‘final count’ when the 
cells are sampled at the end of the experimental run. The final cell count in the XF96 is 
on average 1.5 ± 0.3 (SD) times higher than the seed cell count (20 000 cells in a well; 
Figure 14). Consequently, normalization by the final cell count results in lower flow per 
cell and enhances the variability of the data (Figure 14b). Only the seed count is used for 
normalization in the present meta-analysis. 
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chamber volume [pmol∙s-1∙mL-1]; L: LEAK state; L and L’tot: LEAK respiration per cell Rox-
corrected and total [amol∙s-1∙x-1]; M: mega (106); M: molar (mol∙L-1); n: number of technical 
repeats or total number of measurements; N: number of independent replica; Nce: cell count, 
number of cells [x]; NHDF; normal human dermal fibroblasts; OCR: oxygen consumption rate; 
OSI: outlier-skewness index; p: pico (10-12); R: ROUTINE state; R and R’tot: ROUTINE respiration 
per cell Rox-corrected and total [amol∙s­1∙x­1]; ROX: residual oxygen consumption state; Rox: 
residual oxygen consumption per cell [amol∙s-1∙x-1]; SUIT: substrate-uncoupler-inhibitor 
titration; U: uncoupler; x: elementary unit; y: year. 
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