




## Effect of Initial Aging and High-Fat/High-Fructose Diet on Mitochondrial Bioenergetics and Oxidative Status in Rat Brain

Raffaella Crescenzo<sup>1</sup> · Maria Stefania Spagnuolo<sup>2</sup> · Rosa Cancelliere<sup>1</sup> · Lucia lannotta<sup>1</sup> · Arianna Mazzoli<sup>1</sup> · Cristina Gatto<sup>1</sup> · Susanna lossa<sup>1</sup> · Luisa Cigliano<sup>1</sup>

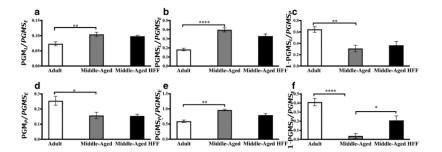
### Effect of age and/or dietary treatment on brain mitochondrial physiology



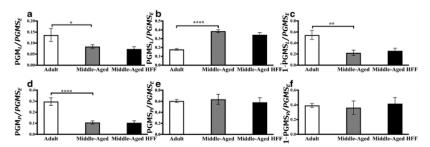
**Figure 1.** Age-induced decrease in ADP or FCCP supported respiration with N-linked substrates or NS-linked substrates, respectively. High-Fat/High Fructose (HFF) diet increases respiration with N- and NS-linked substrates in the hippocampus mitochondria (a). Mitochondria from the frontal cortex suffer a significant age-related decrease with N- and NS-linked substrates with no respiration effect from HFF diet (b). Values are means  $\pm$  SEM (N = 8, \*p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001). \*

#### O2k-brief communicated by D D Antunes and L Tindle-Solomon Oroboros Instruments




Supported by project NextGen-O2k which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 859770








# Impaired coupling efficiency and limitation by ATP synthase in an age-dependent manner



# Functional impairment of Complex I with age in the cortex



Figures 2 and 3. Respiratory flux control ratios and coupling control factors in hippocampus (2) and frontal cortex (3). Leak respiration with electron provision from complex I ( $PGM_L/PGMS_E$ ) (a) and complexes I and II (PGMSL/PGMSE) (b), coupling of efficiency oxidative phosphorylation  $(1 - PGMS_L/PGMSP)$ (c), phosphorylating respiration with electron provision from complex I  $(PGM_P/PGMS_E)$  (d), and complexes I and II ( $PGMS_{P}/PGMS_{E}$ ) (e), apparent excess capacity of the electron transport chain  $(1 - PGM_P/PGMS_E)$  (f) Values are the means  $\pm$  SEM (N=8). \*p < 0.05, \*\*p < 0.01, \*\*\*\*p <0.0001

**Keywords:** Substrates added and their corresponding rates: malate + pyruvate + glutamate =  $N(PGM)_L$ , ADP =  $N(PGM)_P$ , succinate =  $NS(PGMS)_P$ , oligomycin =  $NS_L$ , FCCP =  $NS_E$ , rotenone =  $S_E$ , antimycin A = ROX

 $PGM_{L}$  = LEAK respiration with complex I substrate;  $PGMS_{L}$  = LEAK respiration with complex I and II substrates;  $PGM_{P}$  = phosphorylating respiration with complex I substrate;  $PGMS_{P}$  = phosphorylating respiration with complex I and II substrates;  $PGMS_{E}$  = maximum capacity of the electron transfer pathway with complex I and II substrates

Reference: Crescenzo R, Spagnuolo MS, Cancelliere R, Iannotta L, Mazzoli A, Gatto C, Iossa S, Cigliano L (2019) Effect of initial aging and high-fat/high-fructose diet on mitochondrial bioenergetics and oxidative status in rat brain. Mol Neurobiol [Epub ahead of print].

 $\textbf{Text slightly modified based on the recommendations of the COST Action MitoEAGLE CA15203. \\ \underline{Doi:10.26124/mitofit:190001.v6}$ 

#### O2k-brief communicated by D D Antunes and L Tindle-Solomon Oroboros Instruments



