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Figure 2. Coupling/substrate control diagrams summarizing five SUIT protocols with Figure 6. A: Oxygen flux in SUIT protocol with three mt-preparations normalized
I\/Ieth()dS isolated brain mitochondria. A: Flux control ratios (FCR) normalized relative to ETS for citrate synthase (CS) activity. B: A ¥calculated with binding constant for TPP*
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We applied high-resolution respirometry (HRR) combined with an ion selective electrode
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Figure 1. SUIT protocol with isolated brain mitochondria. A: Recording of oxygen C, D: FCR and A ¥ for substrates of Cl, Cl+II and Cll within a coupling state (L or P). " Jo, normalized for C5 was similar in isolated mitochondria and
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concentration [uM] (blue line) and volume-specific oxygen flux J5, [pmol-s*-ml*] (red line). . External binding of TPP* in homogenates affects absolute values
B: log(TPP*). Decrease of signal corresponds to increase of A¥Y. C: Coupling/substrate S Rot med Dﬂ.f5 fz i Only FCfP rulna AFa of A¥ and shifts of A% between states, partially resolved by
control diagram, with respiratory states: it changing K' . for A¥ calculation in homogenate preparations.
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