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Summary 
 

The current narrative that the reduced coenzymes 
NADH and FADH2 feed electrons from the tricarboxylic 
acid cycle into the mitochondrial electron transfer 
system creates ambiguities around respiratory 
Complex II (CII). The succinate dehydrogenase 
subunit SDHA of CII oxidizes succinate and reduces 
covalently bound FAD to FADH2 in the canonical 
forward tricarboxylic acid cycle. However, several 
graphical representations of the membrane-bound 
electron transfer system (ETS) depict FADH2 in the 
mitochondrial matrix to be oxidized by CII. This leads 
to the false conclusion that FADH2 feeds electrons into 
the ETS through CII, including FADH2 from the 
tricarboxylic acid cycle, the β-oxidation cycle in fatty 
acid oxidation, and the glycerophosphate shuttle. In 
reality, FAD and succinate are the substrates of SDHA 
at the ETS-entry into CII. The reduced flavin groups 
FADH2 and FMNH2 are products downstream within 
CII and CI, respectively. Further electron transfer 
converges at the coenzyme Q-junction. Similarly, 
electron transferring flavoprotein and mitochondrial 
glycerophosphate dehydrogenase feed electrons into 
the Q-junction but not through CII. The ambiguities 
surrounding Complex II in the literature and 
educational tools call for quality control, to secure 
scientific standards in current communications on 
bioenergetics and ultimately support adequate 
clinical applications. 

  

1. Introduction 
 

 The tricarboxylic acid (TCA) cycle ― the citric acid cycle or Krebs cycle ― sparked a 
renaissance of interest in cellular and mitochondrial bioenergetics (Gnaiger et al 2020; 
Bénit et al 2022; Arnold, Finley 2023). TCA cycle metabolites are oxidized while reducing 
NAD+ to NADH in the forward cycle, or transported into the cytosol (Murphy, O'Neill 
2018). Respiratory Complex II (CII, succinate dehydrogenase SDH; succinate-ubiquinone 
oxidoreductase; EC 1.3.5.1) has a unique position in both the TCA cycle and the 
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mitochondrial inner membrane-bound electron transfer system (membrane-ETS). CII is 
not a proton pump in contrast to respiratory Complexes CI, CIII and CIV. All genes for CII 
are nuclear encoded, with exceptions in red algae and land plants (Huang et al 2019; 
Moosavi et al 2019). Succinate:quinone oxidoreductases (SQRs, succinate 
dehydrogenases SDH) favour oxidation of succinate and reduction of quinone in the 
canonical forward direction of the TCA cycle and electron transfer into the Q-junction. 
Operating in the reverse direction, quinol:fumarate reductases (QFRs, fumarate 
reductases, FRD) reduce fumarate and oxidize quinol (Iverson 2013; Maklashina et al 
2022). The reversed TCA cycle has gained interest in studies ranging from metabolism in 
anaerobic animals (Hochachka, Somero 2002), thermodynamic efficiency of anaerobic 
and aerobic ATP production (Gnaiger 1993), reversed electron transfer and ROS 
production (Tretter et al 2016; Robb et al 2018; Spinelli et al 2021), hypoxia and ischemia-
reperfusion injury (Couchani et al 2014), to evolution of metabolic pathways (Lane 2022). 
In cancer tissue CII plays a key role in metabolic remodeling (DeBerardinis, Chandel 2016; 
Schöpf et al 2020). 
 

 The coenzyme NAD+ is reduced to NADH+H+ during the oxidation of pyruvate and 
through redox reactions catalyzed by the TCA cycle enzymes, including isocitrate 
dehydrogenase, oxoglutarate (α-ketoglutarate) dehydrogenase, and malate 
dehydrogenase. In turn, coenzyme FAD is reduced to FADH2 during oxidation of succinate 
by succinate dehydrogenase (CII). This has lead to confusion, when NADH and FADH2 are 
considered the reduced compounds feeding electrons from the TCA cycle into the 
‘respiratory chain’ ― rather than NADH and succinate (Gnaiger 2020). This ‘Complex II 
ambiguitiy’ has penetrated publications on bioenergetics without sufficient quality 
control. Therefore, a critical literature survey is needed to draw attention to widespread 
ambiguities, particularly in graphical representations of the mitochondrial electron 
transfer system, to ensure scientific standards in communications on bioenergetics. 

 
2. Experimental evidence 
 

 Complex II is a flavoprotein with a covalently bound flavin adenine dinucleotide as 
documented in early reports (Kearney 1960) and summarized in classical textbooks 
(Lehninger 1970; Tzagoloff 1982). Microscopic detail on the structure and function of CII 
has expanded our knowledge on the mechanism of enzyme assembly (Maklashina et al 
2022), enzyme structure (Vercellino, Sazanov 2022), kinetic regulation of CII activity 
(Mills et al 2018; Fink et al 2022), and associated pathologies (Bénit et al 2022). 
 

 The reversible oxidoreduction of succinate and fumarate is catalyzed in the soluble 
domain of CII extending from the mitochondrial inner membrane (mtIM) into the mt-
matrix. Succinate donates electrons ― i.e. two hydrogen ions and two electrons (2{H++e−}) 
― to the cofactor FAD which is tightly bound to the subunit SDHA. In SDHA the oxidized 
yellow (450 nm) form FAD functions as hydrogen acceptor from succinate to the reduced 
product FADH2 while fumarate is formed as the oxidized product in the TCA cycle. Like in 
most flavin-linked dehydrogenases, the flavin nucleotide remains tightly bound to the 
enzyme during the catalytic cycle. FADH2 relays electrons further through a series of iron-
sulfur redox centers in SDHB to ubiquinone in the membrane domain harboring SDHC 
and SDHD (Moosavi et al 2019) (Figure 1a).  
 

 The reduced flavin groups FADH2 of flavin adenine dinucleotide and FMNH2 of flavin 
mononucleotide are at functionally comparable levels in the electron transfer in CII and 
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CI, respectively, to the Q-junction (Figure 1b). FMN in CI is reduced by NADH forming 
(reduced) FMNH2 and (oxidized) NAD+. FADH2 and FMNH2 are reoxidized downstream in 
CII and CI, respectively, by electron transfer to coenzyme Q (Figure 1b). 
 

 The branches of electron transfer from NADH and succinate converge through CI 
and CII at the Q-junction. The convergent architecture of the electron transfer system 
(ETS; in contrast to a linear electron transfer chain) is emphasized in Figure 1c (Hatefi 
1962; Gnaiger 2020). Comparable to CII, several additional respiratory Complexes are 
localized in the mtIM which catalyze electron transfer converging at the Q-junction, 
including electron transferring flavoprotein (CETF) in fatty acid oxidation, 
glycerophosphate dehydrogenase (CGpDH), sulfide-ubiquinone oxidoreductase, choline 
dehydrogenase, dihydro-orotate dehydrogenase, and proline dehydrogenase (Gnaiger 
2020; Bénit et al 2022; Pallag et al 2022). 
 

 
 

Figure 1. Complex II bridges electron transfer from the TCA cycle to the 
mitochondrial inner membrane. Graphical representations of the electron transfer 
system ETS with successive emphasis on pathway architecture and concomitant loss of 
detail. CII is integrated in the TCA cycle (matrix-ETS) and the membrane-bound electron 
transfer system (membrane-ETS in the mt-inner membrane mtIM). Joint half-circular 
arrows indicate electron transfer 2{H++e}, distinguished from hydrogen ion H+ transport 
across the mtIM. (a) In the soluble domain of CII, the flavoprotein SDHA catalyzes the 
oxidation succinate → fumarate+2{H++e-} and reduction FAD+2{H++e-} → FADH2. The 
iron–sulfur protein SDHB transfers electrons through Fe-S clusters to the mtIM domain 
where ubiquinone UQ is reduced with 2{H++e-} to ubiquinol UQH2 in SDHC and SDHD. (b) 
NADH and succinate are substrates of redox reactions in CI and CII, respectively, with 
FMNH2 and FADH2 as the corresponding products. Succinate and fumarate indicate the 
chemical entities irrespective of ionization, whereas the charges are shown in NADH, 
NAD+, and H+. (c) Electron flow catalyzed by dehydrognases localized in the mitochondrial 
(mt) matrix converges at the N-junction, reducing NAD+ to NADH. Electron flow from 
NADH and succinate S to molecular oxygen, 2{H++e-}+0.5 O2 ⇢ H2O, converges through CI 
and CII at the Q-junction. CIII passes electrons to cytochrome c and in CIV to O2.  
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3. Results and discussion 
 

3.1. The source and consequence of Complex II ambiguities 
 

‘No representation is ever perfectly expressive, for if it were it would 
not be a representation but the thing itself’ (Grosholz 2007). 

 

 Ambiguities emerge if the representation of a concept is vague to an extent that 
allows for equivocal interpretations. As a consequence, even a basically clear concept 
(Figure 1) may be communicated as a divergence from an established truth. The following 
quotes from Cooper (2000) provide an example (Figure 2). 
 

 (1) The standard comparison is made between NADH (linked to CI) and FADH2 (linked 
to CII; Figure 2): 'Electrons from NADH enter the electron transport chain in complex I, .. A 
distinct protein complex (complex II), which consists of four polypeptides, receives electrons 
from the citric acid cycle intermediate, succinate (Figure 10.9). These electrons are 
transferred to FADH2, rather than to NADH, and then to coenzyme Q.'  
 

 (2) 'In contrast to the transfer of electrons from NADH to coenzyme Q at complex I, the 
transfer of electrons from FADH2 to coenzyme Q is not associated with a significant decrease 
in free energy and, therefore, is not coupled to ATP synthesis.' Note that CI is in the path of 
electron transfer from NADH to coenzyme Q. In contrast, electron transfer from FADH2 to 
coenzyme Q is downstream of succinate oxidation by CII. Thus even a large Gibbs force 
('decrease in free energy') in FADH2→Q would fail to drive the coupled process of proton 
translocation through CII. The Gibbs force (Gnaiger 2020) in S→FADH2 must be accounted 
for. (In parentheses: None of these steps are directly coupled to ATP synthesis. Redox-
driven proton translocation must be distinguished from phosphorylation of ADP driven 
by the protonmotive force). 
 

 (3) CII receives electrons from succinate, yet it is suggested that 'electrons from 
succinate enter the electron transport chain via FADH2 in complex II.' The ambiguity is 
caused by a lack of unequivocal definition of the electron transfer system (electron 
transport chain). Two contrasting definitions are implied of the 'electron transport chain' 
or ETS. (a) CII is part of the ETS. Hence electrons enter the ETS from succinate but not 
from FADH2 ―  from the matrix-ETS to the membrane-ETS (Figure 1b,c). (b) If electrons 
enter the 'electron transport chain via FADH2 in complex II', then subunit SDHA would be 
upstream and hence not part of the ETS (to which conclusion obviously nobody would 
agree). There remains the ambiguity of electron entry into CII from succinate (Figure 1) 
or from FADH2 as the product of  succinate dehydrogenase in the TCA cycle (Figure 3). 
 

Figure 2. Electron flow into Complexes CI (left) and CII (right). Zoom into figures of 
Cooper (2000), with marked quote inserted from the legend to Figure 10.9. 
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3.2. The FADH2 - FAD confusion in the succinate-pathway 
 

 The narrative that the reduced coenzymes NADH and FADH2 feed electrons from the 
TCA cycle into the mitochondrial electron transfer system causes confusion. As a 
consequence, FADH2 appears in several publications erroneously as the substrate of CII 
in the ETS linked to succinate oxidation. This error is widely propagated (Supplement S1 
and S2) and requires clarification (Gnaiger 2020; page 48). The following examples 
illustrate the transition from ambiguity to misunderstanding. 
 

(1) Ambiguities appear in graphical representations, where FADH2 is the product and 
substrate of CII in the same figure (Figure 3). 
 

Figure 3. FADH2 
depicted as 
product and 
substrate of 
Complex II. Zoom 
into figures by (a) 
Arnold, Finley 
(2023) and (b) 

Martínez-Reyes, 
Chandel (2020). 

 

(2) Ambiguity evolved to misconception in graphical representations (Figure 4). 
 

 

Figure 4. Evolving disarrangement in graphical representations of FADH2 as a 
substrate of CII. (a) From ambiguity to misconception in Fig. 6 and 1 of Chandel (2021). 
(b) Succinate or FADH2 as substrates of CII in Fig. 4 and 1 of Jarmuszkiewicz et al (2023). 
 



 

 
 
 

Complex II ambiguities 

6 Gnaiger (2023) MitoFit Preprints 2023.3.v2 
 

(3) Discrepancies are apparent 
between erroneous graphical 
representation (Figure 5) and correct 
text. 'Reducing equivalents (NADH, 
FADH2) provide electrons that flow 
through complex I, the ubiquinone cycle 
(Q/QH2), complex III, cytochrome c, 
complex IV, and to the final acceptor O2 to 
form water' (Fisher-Wellman, Neufer 
2012). 
 

(4)  Graphical errors remain without 
comment in the text (Figure 6). 
 

(5)  Error propagation from graphical 
representation (Figure 3a) to 
misunderstanding in the text: 'SDH 
reduces FAD to FADH2, which donates its 
electrons to complex II'; 'each complete 
turn of the TCA cycle generates three 
NADH and one FADH2 molecules, which 
donate their electrons to complex I and complex II, respectively'; 'complex I and complex II 
oxidize NADH and FADH2, respectively' (Arnold, Finley 2023). 
 

 

Figure 6. FADH2 shown as substrate of CII. Zoom into figures from (a) Brownlee (2001); 
(b) Yépez et al (2018); (c) Read et al (2021) showing FAD as product in CII and the mt-
matrix; (d) Yin et al (2021) with unjustified indication of 2H+ formation in the mt-matrix. 
 

Figure 5. FADH2 is shown as the 
substrate of CII. This graphical 
representation takes the NADH→NAD+ 
analogy to the erroneous charge of FAD, 
but contradicts the text that clarifies that 
FADH2 provides electron flow through the 
Q-cycle (Fisher-Wellman, Neufer 2012).  
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3.3. Oxidation of FADH2 to FAD and 2{H++e-} transfer 
 

 Electron transfer from succinate in the TCA cycle to coenzyme FAD can be written 
as redox reactions, where oxidation (ox) of succinate yields two hydrogen ions and two 
electrons 2{H++e−} which are donated in the reduction (red) of FAD to FADH2, 
 

 ox: Succinate2-  ⟶  Fumarate2- + 2{H++e−}  (Eq. 1a) 
 red: 2{H++e−} + SDHA-FAD  ⟶  SDHA-FADH2 (Eq. 1b) 
 

which yields the net equation 
 

 redox: Succinate2- + SDHA-FAD ⟶  SDHA-FADH2 + Fumarate2- (Eq. 1) 
 

Commonly the charges of succinate, fumarate, and other metabolites are not shown 
explicitly in graphical representations of metabolic pathways, but NAD+ is clearly 
distinguished from FAD (Figure 1b). Taking oxidation of malate by malate dehydrogenase 
for comparison,  
 

 ox: Malate2-  ⟶  Oxaloacetate2- + 2{H++e−}  (Eq. 2a) 
 red 2{H++e−} + NAD+  ⟶  NADH + H+ (Eq. 2b) 
 

 redox: Malate2- + NAD+ ⟶  NADH + H+ + Oxaloacetate2- (Eq. 2) 
 

 H+ from Eq. 2 is frequently omitted to simplify graphical representations (Figures 3 
and 4). However, the rationale for NADH ⟶ NAD+ + 2H+ and FAD ⟶ FAD + 2H+ is unclear 
(Figure 6d; Supplement 1 and 2). Caution is warranted to distinguish in figures electron 
or 2{H++e−} transfer from coupled H+ transport across the mtIM. 
 

 The frequent presentation of electron transfer from FADH2 to CII (Figure 6; 
Supplement Figures S1 and S2) has a logical consequence. Electron transferring 
flavoprotein in β-oxidation and mitochondrial glycerophosphate dehydrogenase generate 
FADH2. If FADH2 would donate electrons to CII, then CII can be seen as an enzyme involved 
downstream of FADH2 in FAO and the glycerophosphate shuttle. This topic requires 
clarification. 
 

3.4. Complex II and fatty acid oxidation 
 

 Electron transferring flavoprotein CETF and CI are the respiratory Complexes 
involved in convergent electron entry into the Q-junction during FAO (Figure 7). 

 

Figure 7. Fatty acid oxidation through 
the β-oxidation cycle (β-ox), electron 
transferring flavoprotein (CETF), and 
Complex I (CI) with convergent electron 
transfer into the Q-junction. Modified after 
Gnaiger (2020). 
 
 

 In the β-oxidation cycle of FAO, acetyl-CoA and the reducing equivalents FADH2 and 
NADH are formed in reactions catalyzed by acyl-CoA dehydrogenases and hydroxyacyl-
CoA dehydrogenases, respectively, in the mitochondrial matrix (Houten et al 2016). When 
FADH2 is erroneously shown as a substrate of CII, a dubious role of CII in FAO is suggested 
as a consequence (Figure 8a,b). Confused electron transfer pathways are described in 
Figure 8c (Supplement 2, Weblink #9) and Figure 8d (Supplement 3, Weblink #44). 
Lemmi et al (1990) noted: ‘mitochondrial Complex II also participates in the oxidation of 
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fatty acids’. This holds for the oxidation of acetyl-Co in the TCA cycle, forming NADH and 
succinate with downstream electron flow through CI and CII, respectively, into the Q-
junction (Figure 1). In contrast, electron transfer from FADH2 formed during β-oxidation 
proceeds through electron transferring flavoprotein CETF and entry into the Q-junction 
independent of CII (Figure 7).  
 

Figure 8. When FADH2 is erroneously shown as a substrate of CII (1), a role of CII in 
oxidation of FADH2 from glycolysis and fatty acid oxidation is suggested as a 
consequence (2). Zoom into figures by (a) Jones, Bennett (2017); (b) Missaglia et al 
(2021); (c) https://www.expii.com/t/electron-transport-chain-summary-diagrams-
10139 (accessed 2023-03-21); (d) https://themedicalbiochemistrypage.org/oxidative-
phosphorylation-related-mitochondrial-functions/ (accessed 2023-03-21). 

 
4. Conclusions 
 
 There is currently ambiguity surrounding the precise role of Complex II in fatty acid 
oxidation. While Complex II is not essential for fatty acid oxidation, it plays a regulatory 
role by sensing changes in metabolic demand and activating the TCA cycle for oxidation 
of acetyl-Co depending on the metabolic conditions. This regulatory function may be 
particularly important during periods of low oxygen availability or high energy demand. 
The integration of FAO with the membrane-bound ETS (Wang et al 2019) has significant 
implications for understanding and treating disorders related to β-oxidation and 
oxidative phosphorylation. Using precisely defined terminology can prevent 
misunderstandings (Gnaiger et al 2020; footnotes in Supplement 4). Clarification instead 
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of perpetuation of Complex II ambiguities helps to maintain the high scientific standards 
required for translating knowledge on metabolism into clinical solutions for 
mitochondrial diseases. 
 

Abbreviations 
 

2{H++e-} 
 
CI 
CII 
CETF 
FADH2 
 
FAD+ 
 
FAO 
FMNH2  
mt-matrix 
mtIM 

redox equivalents in electron 
transfer 
Complex I 
Complex II 
electron transferring flavoprotein 
reduced flavin adenoside 
dinucleotide 
oxidized flavin adenoside 
dinucleotide 
fatty acid oxidation 
reduced flavin mononucleotide 
mitochondrial matrix 
mitochondrial inner membrane 

NADH2 
 
NAD+ 
 
Q 
 
QFR 
 
SQR 
 
SDH, SDHABCD 
TCA cycle 

reduced nicotinamide adenine 
dinucleotide 
oxidized nicotinamide adenine 
dinucleotide 
ETS-reactive coenzyme Q, 
oxidation state is not implied 
mena-quinol-fumarate 
oxidoreductase 
succinate-ubiquinone 
oxidoreductase 
succinate dehydrogenase, CII 
tricarboxylic acid cycle 
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Figure S1. Complex II ambiguities in graphical representations on FADH2 as a 
substrate of Complex II in the canonical forward electron transfer. Chronological 
sequence of publications from 2001 to 2023. NADH → NAD+ is frequently written in 
graphs without showing the H+ on the left side of the arrow, except for (g, w, γ, η, κ). 
However, NADH → NAD++H+ (f, l, p) and NADH → NAD++2H+ (i, m) should be corrected to 
NADH+H+ → NAD+ (Eq. 2). FADH2 → FAD+2H+ (f, i, m) should be corrected to FADH2 → 
FAD (Eq. 1). Perhaps FAD received a false positive charge (ε, ζ) from comparing Eq. 1 with 
Eq. 2. See References for Figure S1. 
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Figure S2. Complex II ambiguities in graphical representations on FADH2 as a 
substrate of Complex II in the canonical forward electron transfer. NADH → NAD+ is 
frequently written in graphs without showing the H+ on the left side of the arrow, except 
for (h, v). However, NADH → NAD++H+ (a-e, z, β), NADH → NAD++2H+ (f, l, r), NADH+H+ 
→ NAD++2H+ (n, o), and NADH → NAD (w) should be corrected to NADH+H+ → NAD+ (Eq. 
2). FADH2 → FAD+2H+ (a’, e, f, l, n, o, r, u, z) and FADH → FAD+H (β) should be corrected 
to FADH2 → FAD (Eq. 1). Weblinks (#): (a) 1-5, 37-40; (a’) 6-7; (b) 8; (c) 1, 6, 7, 9, 37, 39; 
(d) 10; (e) 4, 9, 11-16; (f) 17-18; (g) 19; (h) 20-21; (i) 22; (j) 6-7; (k) 9; (l) 23; (m) 24; (n) 
25; (o) 26; (p) 27; (q) 28; (r) 29; (s) 30; (t) 31; (u) 9, 32; (v) 33; (w) 34; (x) 35; (y) 15, 17; 
(z) 36; (α) 41; (β) 42; (γ) 9. 
 

Weblinks for Figure S2 (retrieved 2023-03-21 to 2023-04-04) 
 

1 (a,c) https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation  - 
OpenStax Biology (CC BY 3.0) - Fig. 7.10 / Fig. 7.12 

2 (a) https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-
phosphorylation/ - Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane 
Gair - Fig. 4.19a 

3 (a) 
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_Gen
eral_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylat
ion_-_Electron_Transport_Chain - LibreTexts Biology – Fig. 7.11.1 

4 (a,e) https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-
transport-chain/ - lumen Biology for Majors I - Fig. 1 / Fig. 3 

5 (a) https://www.pharmaguideline.com/2022/01/electron-transport-chain.html -
Pharmaguideline 

6 (a’,c,j) https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-
respiration-ap/a/oxidative-phosphorylation-etc - Khan Academy - Image modified from 
"Oxidative phosphorylation: Fig. 1", by OpenStax College, Biology (CC BY 3.0) / Image 
modified from "Oxidative phosphorylation: Fig. 3," by Openstax College, Biology (CC BY 
3.0) 

7 (a’,c,j) https://learn.saylor.org/mod/page/view.php?id=32815 -Saylor Academy 
8 (b) https://jackwestin.com/resources/mcat-content/oxidative-

phosphorylation/electron-transfer-in-mitochondria - Jack Westin MCAT Courses 
9 (c,e,k,u,γ) https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139 

- expii - Image source: By CNX OpenStax / By OpenStax College CC BY 3.0, via Wikimedia 
Commons / Whitney, Rolfes 2002 / By User:Rozzychan CC BY-SA 2.5, via Wikimedia 
Commons 
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https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/
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https://learn.saylor.org/mod/page/view.php?id=32815
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https://jackwestin.com/resources/mcat-content/oxidative-phosphorylation/electron-transfer-in-mitochondria
https://www.expii.com/t/electron-transport-chain-summary-diagrams-10139
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10 (d) https://www.labxchange.org/library/items/lb:LabXchange:005ad47f-7556-3887-
b4a6-66e74198fbcf:html:1 - Labxchange - Figure 8.15 credit: modification of work by 
Klaus Hoffmeier 

11 (e) https://commons.wikimedia.org/w/index.php?curid=30148497 - wikimedia 
30148497 - Anatomy & Physiology, Connexions Web site. 
http://cnx.org/content/col11496/1.6/, 2013-06-19 

12 (e) https://biologydictionary.net/electron-transport-chain-and-oxidative-
phosphorylation/ - biologydictionary.net 2018-08-21 

13 (e) https://www.quora.com/Why-does-FADH2-form-2-ATP - Quora 
14 (e) https://teachmephysiology.com/biochemistry/atp-production/electron-transport-

chain/ - TeachMePhysiology - Fig. 1. 2023-03-13 
15 (e,y) https://www.thoughtco.com/electron-transport-chain-and-energy-production-

4136143 - ThoughtCo / extender01 / iStock / Getty Images Plus 
16 (e) https://www.toppr.com/ask/question/short-long-answer-types-whatis-the-electron-

transport-system-and-what-are-its-functions/ - toppr 
17 (f,y) https://researchtweet.com/mitochondrial-electron-transport-chain-2/ - 

researchtweet 
18 (f) https://microbenotes.com/electron-transport-chain/ - Microbe Notes 
19 (g) https://biochemden.com/electron-transport-chain-mechanism/ - BiochemDen.com 
20 (h) https://www.dreamstime.com/electron-transport-chain-as-respiratory-embedded-

transporters-outline-diagram-electron-transport-chain-as-respiratory-embedded-
image235345232 - dreamstime 

21 (h) https://vectormine.com/item/electron-transport-chain-as-respiratory-embedded-
transporters-outline-diagram/ - VectorMine 

22 (i) https://www.creative-biolabs.com/drug-discovery/therapeutics/electron-transport-
chain.htm - creative-biolabs 

23 (l) https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-
2.0/section/2.28/primary/lesson/electron-transport-bio/ - FlexBooks - CK-12 Biology for 
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e.com%2Fwatch%3Fv%3DLsRQ5_EmxJA&docid=bZxQYNch1Ys-
VM&w=1280&h=720&q=electron%20transport%20chain&hl=en-US&client=firefox-b-
d&ved=2ahUKEwjw2YO5--T9AhUwpCcCHduuDVgQMygDegUIARDzAQ - YouTube Dirty 
Medicine Biochemistry - Uploaded 2019-07-18 

34  (w) 
https://chem.libretexts.org/Courses/Saint_Marys_College_Notre_Dame_IN/CHEM_118_(U
nder_Construction)/CHEM_118_Textbook/12%3A_Metabolism_(Biological_Energy)/12.4
%3A_The_Citric_Acid_Cycle_and_Electron_Transport - LibreTexts Chemistry - The Citric 
Acid Cycle and Electron Transport – Fig. 12.4.3 
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WjmycCHbvGC34QMygWegUIARDWAQ..i&imgrefurl=https%3A%2F%2Fwww.youtube.co
m%2Fwatch%3Fv%3DVER6xW_r1vc&docid=VgTgrLf24Lzg4M&w=1280&h=720&itg=1&
q=FADH2%20is%20the%20substrates%20of%20Complex%20II&hl=en&client=firefox-b-
d&ved=2ahUKEwjjlKSKpOX9AhWjmycCHbvGC34QMygWegUIARDWAQ - YouTube 
sciencemusicvideos - Uploaded 2014-08-19 

36 (z) https://www.ck12.org/biology/electron-transport/lesson/The-Electron-Transport-
Chain-Advanced-BIO-ADV/ - cK-12 

37 (a,c) https://www.texasgateway.org/resource/74-oxidative-phosphorylation - Texas 
Gateway - Figure 7.11 

38 (a) https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-
phosphorylation/ - Charles Molnar and Jane Gair. 4.3 Citric Acid Cycle and Oxidative 
Phosphorylation. Concepts of Biology - 1st Canadian Edition, BCcampus 

39 (a,c) https://opened.cuny.edu/courseware/lesson/639/overview -CUNY 
40  (a) https://brainbrooder.com/lesson/254/7-4-1-electron-transport-chain - Brain 

Brooder 
41 (α) https://www.bbc.co.uk/bitesize/guides/zdq9382/revision/5 - BBC BITESIZE 
42 (β) 

https://www.sparknotes.com/biology/cellrespiration/oxidativephosphorylation/section
2/ - SparkNotes 

 
Supplement S3 
 

Weblinks on FAO and CII (retrieved 2023-03-21) 
 

43 https://conductscience.com/electron-transport-chain/ - Conduct Science: "In Complex II, 
the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH2 to 
FAD+. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." 
- Comments: FAD does not have a postive charge. FADH2 is the reduced form, it is not 
reduced. And again: In CII, FAD is reduced to FADH2. 

44 https://themedicalbiochemistrypage.org/oxidative-phosphorylation-related-
mitochondrial-functions/ - The Medical Biochemistry Page: ‘In addition to transferring 
electrons from the FADH2 generated by SDH, complex II also accepts electrons from the 
FADH2 generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from 
mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate 
shuttle’ (Figure 8d). 

45 
https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%20
2013%20Lecture%2037%20-%2038.pdf - CHM333 LECTURES 37 & 38: 4/27 – 29/13 
SPRING 2013 Professor Christine Hrycyna - Acyl-CoA dehydrogenase is listed under 
'Electron transfer in Complex II'. 
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Supplement S4: Footnotes on terminology 
 

Electron transfer: A distinction is necessary between electron transfer in redox reactions 
and electron transport in the diffusion of charged ionic species within or between 
cellular compartments. 

Electron transfer system ETS: The convergent architecture of the electron transfer system 
is emphasized in contrast to linear electron transfer chains ETCs within segments of 
the ETS. 

Matrix-ETS: Electron transfer and corresponding OXPHOS capacities are classically 
studied in mitochondrial preparations as oxygen consumption supported by various 
fuel substrates undergoing partial oxidation in the mt-matrix, such as pyruvate, 
malate, succinate, and others. Therefore, the matrix component of ETS (matrix-ETS) 
is distinguished from the ETS bound to the mt-inner membrane (membrane-ETS; 
Gnaiger et al 2020). 

Membrane-ETS: Electron transfer is frequently considered as the segment of redox 
reactions linked to the mtIM. However, the membrane-ETS is only part of the total 
ETS, which includes the upstream matrix-ETS. 

2{H++e-}: The symbol [2 H] is frequently used to indicate redox equivalents in the transfer 
from hydrogen donors to hydrogen acceptors, which does not explicitly express that 
it applies equally to electron and hydrogen ion transfer. Brackets are avoided to 
exclude the confusion with their frequent application to indicate amount-of-
substance concentrations. 


