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Summary 
 

The current narrative that the reduced coenzymes 
NADH and FADH2 feed electrons from the tricarboxylic 
acid cycle into the mitochondrial electron transfer 
system creates ambiguities around respiratory 
Complex II (CII). The succinate dehydrogenase 
subunit SDHA of CII oxidizes succinate and reduces 
covalently bound FAD to FADH2 in the canonical 
forward tricarboxylic acid cycle. However, several 
graphical representations of the membrane-bound 
electron transfer system (ETS) depict FADH2 in the 
mitochondrial matrix to be oxidized by CII. This leads 
to the false conclusion that FADH2 feeds electrons into 
the ETS through CII, including FADH2 from the 
tricarboxylic acid cycle and the β-oxidation cycle in 
fatty acid oxidation. In reality, FAD and succinate are 
the substrates of SDHA at the ETS-entry into CII. The 
reduced flavin groups FADH2 and FMNH2 are products 
downstream within CII and CI, respectively. Further 
electron transfer converges at the coenzyme Q-
junction. Similarly, electron transferring flavoprotein 
and mitochondrial glycerophosphate dehydrogenase 
feed electrons into the Q-junction but not through CII. 
The ambiguities surrounding Complex II in the 
literature and educational tools call for quality 
control, to secure scientific standards in current 
communications on bioenergetics and ultimately 
support adequate clinical applications. 

  

1. Introduction 
 

 The tricarboxylic acid (TCA) cycle ― the citric acid cycle or Krebs cycle ― sparked a 
renaissance of interest in cellular and mitochondrial bioenergetics (Gnaiger et al 2020; 
Bénit et al 2022; Arnold, Finley 2023). TCA cycle metabolites are oxidized while reducing 
NAD+ to NADH in the forward cycle, or are transported into the cytosol (Murphy, O'Neill 
2018). Respiratory Complex II (CII, succinate dehydrogenase SDH; succinate-ubiquinone 
oxidoreductase; EC 1.3.5.1) has a unique position in both the TCA cycle and the 
mitochondrial membrane-bound electron transfer system (membrane-ETS). All genes for 
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CII are nuclear encoded, with exceptions in red algae and land plants (Huang et al 2019; 
Moosavi et al 2019). Succinate:quinone oxidoreductases (SQRs, succinate 
dehydrogenases SDH) favour oxidation of succinate and reduction of quinone in the 
canonical forward direction of the TCA cycle and electron transfer into the Q-junction 
(Cecchini 2003). Operating in the reverse direction, quinol:fumarate reductases (QFRs, 
fumarate reductases, FRD) reduce fumarate and oxidize quinol (Iverson 2013; 
Maklashina et al 2022). The reversed TCA cycle has gained interest in studies ranging 
from metabolism in anaerobic animals (Hochachka, Somero 2002), thermodynamic 
efficiency of anaerobic and aerobic ATP production (Gnaiger 1993), reversed electron 
transfer and production of reactive oxygen species (Tretter et al 2016; Robb et al 2018; 
Spinelli et al 2021), hypoxia and ischemia-reperfusion injury (Couchani et al 2014), to 
evolution of metabolic pathways (Lane 2022). In cancer tissue CII plays a key role in 
metabolic remodeling (DeBerardinis, Chandel 2016; Schöpf et al 2020). 
 

 Two-electron transfer 2{e-} from succinate to the oxidized flavin adenoside 
dinucleotide FAD is redox-coupled to the transfer of two hydrogen ions 2{H+} with 
formation of FADH2. This H+-linked electron transfer (Hsu et al 2022) through CII is not 
coupled to H+ translocation across the mitochondrial inner membrane (mtIM). Hence, CII 
is not a H+ pump in contrast to the respiratory Complexes CI, CIII and CIV through which 
electron transfer drives and maintains the protonmotive force. The coenzyme NAD+ is 
reduced to NADH+H+ during the oxidation of pyruvate and through redox reactions 
catalyzed by TCA cycle enzymes including isocitrate dehydrogenase, oxoglutarate (α-
ketoglutarate) dehydrogenase, and malate dehydrogenase. In turn, coenzyme FAD is 
reduced to FADH2 during oxidation of succinate by succinate dehydrogenase (CII). 
Confusion emerges, however, when NADH and FADH2 are considered as the reduced 
compounds feeding electrons from the TCA cycle into the ‘respiratory chain’ ― rather than 
NADH and succinate (Gnaiger 2020). This ‘Complex II ambiguitiy’ has deeply penetrated 
the scientific literature on bioenergetics without sufficient quality control. Therefore, a 
critical literature survey is needed to draw attention to widespread ambiguities, 
particularly in graphical representations of the mitochondrial electron transfer system, to 
ensure scientific standards in communications on bioenergetics. 

 
2. Experimental evidence 
 

 Complex II is a flavoprotein with a covalently bound flavin adenine dinucleotide as 
documented in early reports (Kearney 1960) and summarized in classical textbooks 
(Lehninger 1970; Tzagoloff 1982). Microscopic detail on the structure and function of CII 
has expanded our knowledge on the mechanism of enzyme assembly (Maklashina et al 
2022), enzyme structure (Vercellino, Sazanov 2022), kinetic regulation of CII activity 
(Mills et al 2018; Fink et al 2022), and associated pathologies (Bénit et al 2022). 
 

 The reversible oxidoreduction of succinate and fumarate is catalyzed in the soluble 
domain of CII extending from the mtIM into the mt-matrix. Succinate donates electrons ― 
i.e. two hydrogen ions and two electrons (2{H++e−}) ― to the cofactor FAD which is tightly 
bound to the subunit SDHA. SDHA contains the catalytically active dicarboxylate binding 
site where succinate is oxidized to fumarate. The oxidized yellow (450 nm) form FAD 
functions as hydrogen acceptor from succinate to the reduced product FADH2 while 
fumarate is formed as the oxidized product in the TCA cycle. Like in most flavin-linked 
dehydrogenases, the flavin nucleotide remains tightly bound to the enzyme during the 
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catalytic cycle. FADH2 relays electrons further through a series of iron-sulfur redox 
centers in SDHB to ubiquinone in the membrane domain harboring SDHC and SDHD 
(Moosavi et al 2019) (Figure 1a).  
 

 The reduced flavin groups FADH2 of flavin adenine dinucleotide and FMNH2 of flavin 
mononucleotide are at functionally comparable levels in the electron transfer in CII and 
CI, respectively, to the Q-junction (Figure 1b). FMN in CI is reduced by NADH forming 
(reduced) FMNH2 and (oxidized) NAD+. FADH2 and FMNH2 are reoxidized downstream in 
CII and CI, respectively, by final electron transfer to coenzyme Q (Figure 1b). 

 
 
 

Figure 1. Complex II bridges electron transfer from the TCA cycle to the 
mitochondrial inner membrane. Graphical representations of the electron transfer 
system ETS with successive emphasis on pathway architecture and concomitant loss of 
detail. CII is integrated in the TCA cycle (matrix-ETS) and the membrane-bound electron 
transfer system (membrane-ETS of the mt-inner membrane mtIM). Joint pairs of half-
circular arrows indicate electron transfer 2{H++e}, distinguished from vectorial hydrogen 
ion transport across the mtIM (H+neg → H+pos) from the negatively to the positively charged 
compartment. (a) In the soluble domain of CII, the flavoprotein SDHA catalyzes the 
oxidation succinate → fumarate+2{H++e-} and reduction FAD+2{H++e-} → FADH2. The 
iron–sulfur protein SDHB transfers electrons through Fe-S clusters to the mtIM domain 
where ubiquinone UQ is reduced with 2{H++e-} to ubiquinol UQH2 in SDHC and SDHD. (b) 
NADH and succinate are substrates of 2{H++e-} transfer to CI and CII, respectively, with 
FMNH2 and FADH2 as the corresponding products. NADH+H+ and NAD+ cycle between 
matrix-dehydrogenases and CI, whereas FAD and FADH2 cycle within the enzyme CII. 
Succinate and fumarate indicate the chemical entities irrespective of ionization, whereas 
the charges are shown in NADH, NAD+, and H+. (c) Electron flow catalyzed by 
dehydrognases localized in the mt-matrix converges at the N-junction, reducing NAD+ to 
NADH. Electron flow from NADH and succinate S to molecular oxygen, 2{H++e-}+0.5 O2 ⇢ 
H2O, converges through CI and CII at the Q-junction. CIII passes electrons to cytochrome c 
and in CIV to O2.  
 

 The branches of electron transfer from NADH and succinate converge through CI 
and CII at the Q-junction. The convergent architecture of the electron transfer system 
(ETS; in contrast to a linear electron transfer chain) is emphasized in Figure 1c (Hatefi 
1962; Gnaiger 2020). Comparable to CII, several additional respiratory Complexes are 
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localized in the mtIM which catalyze electron transfer converging at the Q-junction, 
including electron transferring flavoprotein (CETF) in fatty acid oxidation, 
glycerophosphate dehydrogenase (CGpDH), sulfide-ubiquinone oxidoreductase, choline 
dehydrogenase, dihydro-orotate dehydrogenase, and proline dehydrogenase (Gnaiger 
2020; Bénit et al 2022; Pallag et al 2022). 

 
3. Results and discussion 
 

3.1. The source and consequence of Complex II ambiguities 
 

‘No representation is ever perfectly expressive, for if it were it would 
not be a representation but the thing itself’ (Grosholz 2007). 

 

 Ambiguities emerge if the representation of a concept is vague to an extent that 
allows for equivocal interpretations. As a consequence, even a basically clear concept 
(Figure 1) may be communicated as a divergence from an established truth. The 
comparison between NADH linked to CI and FADH2 (instead of succinate) linked to CII 
leads us astray, as illustrated by the following quotes from Cooper (2000) (Figure 2). 

 

Figure 2. Electron flow into Complexes (a) CI and (b) CII. Zoom into figures of Cooper 
(2000). (a) The marked H+ is consumed in H+-linked electron transfer instead of being 
produced. (b) Marked quote inserted from the legend to Figure 10.9. 
 

 (1) 'Electrons from NADH enter the electron transport chain in complex I, .. A distinct 
protein complex (complex II), which consists of four polypeptides, receives electrons from the 
citric acid cycle intermediate, succinate (Figure 10.9). These electrons are transferred to 
FADH2, rather than to NADH, and then to coenzyme Q.'  
 

 (2) 'In contrast to the transfer of electrons from NADH to coenzyme Q at complex I, the 
transfer of electrons from FADH2 to coenzyme Q is not associated with a significant decrease 
in free energy and, therefore, is not coupled to ATP synthesis.' Note that CI is in the path of 
electron transfer from NADH to coenzyme Q. In contrast, electron transfer from FADH2 to 
coenzyme Q is downstream of succinate oxidation by CII. Thus even a large Gibbs force 
('decrease in free energy') in FADH2→Q would fail to drive the coupled process of proton 
translocation through CII. The total Gibbs force (Gnaiger 2020) in S→FADH2→Q must be 
accounted for. (In parentheses: None of these steps are directly coupled to ATP synthesis. 
Redox-driven proton translocation must be distinguished from phosphorylation of ADP 
driven by the protonmotive force). 
 

 (3) CII receives electrons from succinate, yet it is suggested that 'electrons from 
succinate enter the electron transport chain via FADH2 in complex II.' The ambiguity is 
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caused by a lack of unequivocal definition of the electron transfer system (‘electron 
transport chain’; Supplement 1). Two contrasting definitions are implied of the 'electron 
transport chain' or ETS. (a) CII is part of the ETS. Hence electrons enter the ETS from 
succinate but not from FADH2 ―  from the matrix-ETS to the membrane-ETS (Figure 1b,c). 
(b) If electrons enter the 'electron transport chain via FADH2 in complex II', then subunit 
SDHA would be upstream and hence not part of the ETS (to which conclusion obviously 
nobody would agree). There remains the ambiguity of electron entry into CII from 
succinate (Figure 1) or from FADH2 as the product of  succinate dehydrogenase in the TCA 
cycle (Figure 3). 
 

 

Figure 3. FADH2 depicted as product and substrate of Complex II. Zoom into figures 
by (a) Arnold, Finley (2023) and (b) Martínez-Reyes, Chandel (2020). NADH and NAD+ 
cycle between different types of enzymes (yellow circle), in contrast to the FADH2-FAD 
cycle located within the same enzyme Complex (SDH and CII are synonyms). 
 
3.2. The FADH2 - FAD confusion in the succinate-pathway 
 

 The narrative that the reduced coenzymes NADH and FADH2 feed electrons from the 
TCA cycle into the mitochondrial electron transfer system causes confusion. As a 
consequence, FADH2 appears in several publications erroneously as the substrate of CII 
in the ETS linked to succinate oxidation. This error is widely propagated in 98 
publications found from 2001 to 2023 (Supplements 2 to 6) and educational websites 
(Supplement 7). Clarification is required (Gnaiger 2020; page 48). The following examples 
illustrate the transition from ambiguity to misunderstanding. 
 

(1) Ambiguities appear in graphical representations, where FADH2 is the product and 
substrate of CII (synonymous with SDH) in the same figure (Figure 3; Suppl Figure S2). 
 

(2) Correct representation or ambiguity evolved to misconception in graphical 
representations (Figure 4). 
 

(3) Graphical errors on electron entry from FADH2 into CII show up without comment 
in or context to the text (Figure 5; Suppl Figures S3). Instead of NADH+H+→NAD+ there 
appears NADH→NAD++H+ (or +2H+) and by analogy FADH→FAD +2H+ (Figure 5d; Suppl 
Figure S4). The analogy NADH→NAD+ is taken further to include a charge for FAD or even 
writing FADH+ as the product (Figure 6; Suppl Figure S5).  
 

(4)  Error propagation from graphical representation (Figure 3a) to misunderstanding 
in the text: 'SDH reduces FAD to FADH2, which donates its electrons to complex II'; 'each 
complete turn of the TCA cycle generates three NADH and one FADH2 molecules, which 
donate their electrons to complex I and complex II, respectively'; 'complex I and complex II 
oxidize NADH and FADH2, respectively' (Arnold, Finley 2023). 
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Figure 4. Evolving disarrangement in graphical representations of FADH2 as a 
substrate of CII. (a) Succinate or FADH2 as substrates of CII (Jarmuszkiewicz et al 2023). 
(b) From ambiguity to misconception (Chandel 2021). 
 

 

Figure 5. FADH2 shown as substrate of CII. Zoom into figures from (a) Brownlee (2001); 
(b) Yépez et al (2018); (c) Read et al (2021) showing FAD as product in CII and the mt-
matrix; (d) Yin et al (2021) with unjustified indication of 2H+ formation in the mt-matrix. 
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Figure 6. FADH2 is shown as the substrate of CII. These graphical representations take 
the NADH→NAD+ analogy to the level of depicting FAD as (a) FAD+ (Fisher-Wellman, 
Neufer 2012) or (b) FADH+ (Torres et al 2018).  
 

 In summary, downstream of the dehydrogenases of the TCA cycle, NADH is oxidized 
by CI. Two-electron oxidation of succinate is redox-linked to reduction of FAD to FADH2. 
In terms of electron entry into CII many publications show it in the wrong direction, i.e. 
FADH2 as electron donor from the TCA cycle to CII (Figures 3 to 6; Suppl Figures S2 to S6). 
 

3.3. Oxidation of FADH2 to FAD and 2{H++e-} transfer 
 

 Electron transfer from succinate in the TCA cycle to coenzyme FAD can be written 
as a redox reaction, where oxidation (ox) of succinate yields two hydrogen ions and two 
electrons 2{H++e−} which are donated in the reduction (red) of FAD to FADH2, 
 

 ox: Succinate2-  ⟶  Fumarate2- + 2{H++e−}  (Eq. 1a) 
 red: 2{H++e−} + SDHA-FAD  ⟶  SDHA-FADH2 (Eq. 1b) 
 

which yields the net redox reaction equation 
 

 redox: Succinate2- + SDHA-FAD ⟶  SDHA-FADH2 + Fumarate2- (Eq. 1) 
 

Commonly the charges of succinate, fumarate (Eq. 1), and other metabolites are not 
shown explicitly in graphical representations of metabolic pathways, but NAD+ is clearly 
distinguished from FAD (Figure 1b). Taking oxidation of malate by malate dehydrogenase 
for comparison,  
 

 ox: Malate2-  ⟶  Oxaloacetate2- + 2{H++e−}  (Eq. 2a) 
 red 2{H++e−} + NAD+  ⟶  NADH + H+ (Eq. 2b) 
 

 redox: Malate2- + NAD+ ⟶  NADH + H+ + Oxaloacetate2- (Eq. 2) 
 

In brief, oxidation of NADH and FADH2 may be represented as 
 

 ox: NADH + H+ ⟶  NAD+ + 2{H++e−} (Eq. 3a) 
 ox: FADH2 ⟶  FAD   + 2{H++e−} (Eq. 3b) 
 

H+ in Eq. 3a is frequently omitted to simplify graphical representations, and a pair of 
rounded arrows ‒ one external touching the enzyme and one internal within the enzyme 
‒ indicates H+-linked electron transfer in terms of 2{H++e−} (Figures 1a, 1b, 3a, and 4). 
However, caution is warranted to distinguish (1) H+ in chemical acid/base reactions, such 
as the hydrogencarbonate equilibrium H2CO3 ↔ HCO3- + H+, (2) chemical H+-linked 
electron transfer (Hsu et al 2022) indicated as 2{H++e−} in redox reactions (Eq. 1 and 2), 
and (3) coupled vectorial transport or translocation of H+ across the mtIM (H+neg ⟶ H+pos; 
Figures 1b and c; Supplement 1). The equilibrium in Eq. 3a depends on pH, whereas Eq. 
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3b is independent of pH. The fundamental differece between H+ and 2{H++e−} in Eq. 3a is 
lost in representations such as Figure 5d.  
 

 Disturbingly, oxidation of FADH2 is shown in meaningless patterns in various 
figures, occasionally corresponding with analogous representations of oxidation of NADH 
(Figure 6; Table 1). 
 

Table 1. Misconceptions in graphical representations of electron entry into CII. 
 

Analogy with NADH Suppl Figure FADH2 Suppl Figure 
NADH + H+ ⟶  NAD+     
NADH ⟶  NAD+ + H+ S3d,r,λ,π,φ FADH2 ⟶  FAD S2, S3 
NADH ⟶  NAD+ + H+ S4a,e,g FADH2 ⟶  FAD + 2H+ S4a-i 
NADH ⟶  NAD+ + 2H+ S4c,f,h,i    
   FADH2 ⟶  FAD+ S5a-g 
NADH + H+ ⟶  NADH S6a FADH2 ⟶  FADH S6a-d 
   FADH2 ⟶  FADH+ S6e 
   FADH ⟶   S6f 
NADH ⟶  NAD + H+ S4b FADH ⟶  FAD+ S6g 
NADH ⟶  NAD+ + H+ S6h FADH ⟶  FAD+ + H+ S6h 
NADH ⟶  NAD+ + H+ S6i FADH ⟶  FAD+ + 2H+ S6i 

 

 The erroneous presentation of electron transfer from FADH2 to CII has a logical 
consequence. β-oxidation generates FADH2 (Figure 7). If FADH2 would donate electrons 
to CII, then CII can be seen as an enzyme involved downstream of FADH2 in FAO. This topic 
requires clarification. 
 

3.4. Complex II and fatty acid oxidation 
 

 Electron transferring flavoprotein CETF and CI are the respiratory Complexes 
involved in convergent electron entry into the Q-junction during FAO (Figure 7). 

 

Figure 7. Fatty acid oxidation through 
the β-oxidation cycle (β-ox), electron 
transferring flavoprotein (CETF), and 
Complex I (CI) with convergent electron 
transfer into the Q-junction. Modified after 
Gnaiger (2020). 
 
 

 In the β-oxidation cycle of FAO, acetyl-CoA and the reducing equivalents FADH2 
and NADH are formed in reactions catalyzed by acyl-CoA dehydrogenases and 
hydroxyacyl-CoA dehydrogenases, respectively, in the mitochondrial matrix (Houten et al 
2016). When FADH2 is erroneously shown as a substrate of CII, a dubious role of CII in 
FAO is suggested as a consequence (Figure 8; Supplement 8). Lemmi et al (1990) noted: 
‘mitochondrial Complex II also participates in the oxidation of fatty acids’. This holds for the 
oxidation of acetyl-Co in the TCA cycle, forming NADH and succinate with downstream 
electron flow through CI and CII, respectively, into the Q-junction (Figure 1). In contrast, 
electron transfer from FADH2 formed during β-oxidation proceeds through electron 
transferring flavoprotein CETF and entry into the Q-junction independent of CII (Figure 
7). Fatty acylCoA dehydrogenase reduces FAD to FADH2 in the mitochondrial matrix. The 
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FADH2 of the of the fatty acyl-CoA dehydrogenase is reoxidized by the FAD-containing 
electron transfer flavoprotein Complex CETF. Thus FADH2 can be seen as an internal 
substrate of CETF, comparable to NADH as a substrate of CI, succinate as a substrate of CII 
and glycerophosphate as a substrate of CGpDH. 

 

Figure 8. When FADH2 is erroneously shown as a substrate of CII (1), a role of CII in 
oxidation of FADH2 from fatty acid oxidation is suggested as a consequence (2). 
Zoom into figures from (a) Jones, Bennett (2017); (b) Missaglia et al (2021); (c) Bansal et 
al (2019); (d) https://themedicalbiochemistrypage.org/oxidative-phosphorylation-
related-mitochondrial-functions/ (accessed 2023-03-21). 

 
4. Conclusions 
 

 There is currently ambiguity surrounding the precise role of Complex II in fatty acid 
oxidation. While Complex II is not essential for fatty acid oxidation, it plays a regulatory 
role by sensing changes in metabolic demand and activating the TCA cycle for oxidation 
of acetyl-Co depending on the metabolic conditions. This regulatory function may be 
particularly important during periods of low oxygen availability or high energy demand. 
The integration of FAO with the membrane-bound ETS (Wang et al 2019) has significant 
implications for understanding and treating disorders related to β-oxidation and 
oxidative phosphorylation. Using precisely defined terminology can prevent 
misunderstandings (Gnaiger et al 2020; footnotes in Supplement 1). Do erroneous 
diagrams ‒ from ambiguous electron transfer (Suppl Figures S2 to S8) to presentation of 
CII as a H+ pump (Suppl Figure S9) ‒ cast some doubts on the quality of the publication? 
Whether using iconic or symbolic elements in graphical representations, incorporating 
complementary text not only enhances the communication of intended meaning but 
diagrams will be improved in the process. When peer review provides insufficient help 
for corrections, post-peer review by editors and critical readers is required for revisions 
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of articles which may be re-published as living communications (Gnaiger 2021). 
Clarification instead of perpetuation of Complex II ambiguities leads to a better 
representation of fundamental concepts of bioenergetics and helps to maintain the high 
scientific standards required for translating knowledge on metabolism into clinical 
solutions for mitochondrial diseases. 
 

Abbreviations 
 

2{H++e-} 
 
CI 
CII 
CETF 
FADH2 
 
FAD 
 
FAO 
FMNH2  
mt-matrix 
mtIM 

redox equivalents in electron 
transfer 
Complex I 
Complex II 
electron transferring flavoprotein 
reduced flavin adenoside 
dinucleotide 
oxidized flavin adenoside 
dinucleotide 
fatty acid oxidation 
reduced flavin mononucleotide 
mitochondrial matrix 
mitochondrial inner membrane 

NADH2 
 
NAD+ 
 
Q 
 
QFR 
 
SQR 
 
SDH, SDHABCD 
TCA cycle 

reduced nicotinamide adenine 
dinucleotide 
oxidized nicotinamide adenine 
dinucleotide 
ETS-reactive coenzyme Q, 
oxidation state is not implied 
mena-quinol-fumarate 
oxidoreductase 
succinate-ubiquinone 
oxidoreductase 
succinate dehydrogenase, CII 
tricarboxylic acid cycle 
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Supplement 1 
 
Footnotes on terminology 
 

Electron transfer system ETS: The convergent architecture of the electron transfer system 
is emphasized in contrast to linear electron transfer chains ETCs within segments of 
the ETS. 

 

Electron transfer: A distinction is necessary between electron transfer in redox reactions 
and electron transport (translocation) in the diffusion of charged ionic species 
within or between cellular compartments. The symbol 2{H++e−} is introduced to 
indicate H+-linked electron transfer of two hydrogen ions and two electrons in a 
redox reaction. 

 

H+-linked electron transfer: The term H+-coupled electron transfer (Hsu et al 2022) is 
replaced by H+-linked electron transfer, to avoid confusion with coupled H+ 
translocation.  

 

Matrix-ETS: Electron transfer and corresponding OXPHOS capacities are classically 
studied in mitochondrial preparations as oxygen consumption supported by various 
fuel substrates undergoing partial oxidation in the mt-matrix, such as pyruvate, 
malate, succinate, and others. Therefore, the matrix component of ETS (matrix-ETS) 
is distinguished from the ETS bound to the mt-inner membrane (membrane-ETS; 
Gnaiger et al 2020). 

 

Membrane-ETS: Electron transfer is frequently considered as the segment of redox 
reactions linked to the mtIM. However, the membrane-ETS is only part of the total 
ETS, which includes the upstream matrix-ETS. 

 

2{H++e-}: The symbol [2 H] is frequently used to indicate redox equivalents in the transfer 
from hydrogen donors to hydrogen acceptors. However, 2[H] does not explicitly 
express that it applies to both electron and hydrogen ion transfer. Brackets are 
avoided to exclude the confusion with their frequent application to indicate amount-
of-substance concentrations. 
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Supplement 2 
 

FAD a substrate of SDH and FADH2 a substrate of CII (Figure S2) 
 

 SDH: FAD ⟶  FADH2  
 CII: FADH2 ⟶  FAD (1) 
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Figure S2. Complex II ambiguities in graphical representations on FADH2 as a 
substrate of Complex II in the canonical forward electron transfer. The TCA cycle 
reduces FAD to FADH2 - in several cases shown to be catalyzed by SDH. Then FADH2 is 
erroneously shown to feed electrons into CII. Alphabetical sequence of publications from 
2001 to 2023. See References for Figure S2. 
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Supplement 3 
 

FADH2 as substrate of CII (Figure S3) 
 

  FADH2 ⟶  FAD (1) 
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Figure S3. Continued 
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Figure S3. Complex II ambiguities in graphical representations on FADH2 as a 
substrate of Complex II in the canonical forward electron transfer. Alphabetical 
sequence of publications from 2001 to 2023. See References for Figure S3. 
 

References for Figure S3 
 

a Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483-
95. https://doi.org/10.1016/j.cell.2005.02.001  

b Bao MH, Wong CC (2021) Hypoxia, metabolic reprogramming, and drug resistance in liver 
cancer. Cells 10:1715. https://doi.org/10.3390/cells10071715  

c Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial 
dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and 
neurodegeneration. Springer ISBN 978-94-007-1290-4:47-68.  

d Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM 
(2022) Mitochondrial effects of common cardiovascular medications: the good, the bad 
and the mixed. Int J Mol Sci 23:13653. https://doi.org/10.3390/ijms232113653  

e Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in 
the embryonic heart coincides with the activation of mitochondrial complex 1 and the 
formation of supercomplexes. PLoS One 9:e113330. 
https://doi.org/10.1371/journal.pone.0113330  

f Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek 
CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain 
is necessary for NLRP3 inflammasome activation. Nat Immunol 23:692-704. 
https://doi.org/10.1038/s41590-022-01185-3 

g Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. 
Nature 14:813-20. https://doi.org/10.1038/414813a  

• Copied by: Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based 
on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, 
Nelson R, eds. Webvision: The organization of the retina and visual system [Internet]. Salt 
Lake City (UT): University of Utah Health Sciences Center; 1995-. 
https://www.ncbi.nlm.nih.gov/books/NBK310272/  

h Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. J Clin 
Invest 112:1788-90. https://doi.org/10.1172/JCI20501  

i Carriere A, Casteilla L (2019) Role of mitochondria in adipose tissues metabolism and 

https://doi.org/10.1016/j.cell.2005.02.001
https://doi.org/10.3390/cells10071715
https://doi.org/10.3390/ijms232113653
https://doi.org/10.1371/journal.pone.0113330
https://doi.org/10.1038/s41590-022-01185-3
https://doi.org/10.1038/414813a
https://www.ncbi.nlm.nih.gov/books/NBK310272/
https://doi.org/10.1172/JCI20501


 
 

 

MitoFit 2023.3.v3. https://doi.org/10.26124/mitofit:2023-0003.v3 

www.mitofit.org 23 
 

plasticity. Academic Press In: Mitochondria in obesity and type 2 diabetes. Morio B, 
Pénicaud L, Rigoulet M (eds) Academic Press. https://doi.org/10.1016/B978-0-12-
811752-1.1.00007-9  

j Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control 
mammalian stem cell fate. Cell Stem Cell 28:394-408. 
https://doi.org/10.1016/j.stem.2021.02.011  

k Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and 
myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. 
https://doi.org/10.1152/ajpcell.00131.2021  

l Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a 
therapeutic strategy for chronic lymphocytic leukemia. Oxid Med Cell Longev 
2018:2426712. https://doi.org/10.1155/2018/2426712  

m de Beauchamp L, Himonas E, Helgason GV (2022) Mitochondrial metabolism as a potential 
therapeutic target in myeloid leukaemia. Leukemia 36:1-12. 
https://doi.org/10.1038/s41375-021-01416-w  

n de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of 
reactive oxygen species in adipogenic differentiation. Adv Exp Med Biol 1083:125-144. 
https://doi.org/10.1007/5584_2017_119  

o Delport A, Harvey BH, Petzer A, Petzer JP (2017) Methylene blue and its analogues as 
antidepressant compounds. Metab Brain Dis 32:1357-82. 
https://doi.org/10.1007/s11011-017-0081-6  

p Escoll P, Platon L, Buchrieser C (2019) Roles of mitochondrial respiratory Complexes 
during infection. Immunometabolism 1:e190011. 
https://doi.org/10.20900/immunometab20190011  

q Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver 
mitochondria in sepsis. Cells 11:1598. https://doi.org/10.3390/cells11101598  

r Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: 
activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 
95:1161-78. https://doi.org/10.1007/s00204-021-02974-9  

s Granger DN, Kvietys PR (2015) Reperfusion injury and reactive oxygen species: The 
evolution of a concept. Redox Biol 6:524-551. 
https://doi.org/10.1016/j.redox.2015.08.020  

t Han S, Chandel NS (2019) There is no smoke without mitochondria. Am J Respir Cell Mol 
Biol 60:489-91. https://doi.org/10.1165/rcmb.2018-0348ED  

u Hanna D, Kumar R, Banerjee R (2023) A metabolic paradigm for hydrogen sulfide 
signaling via electron transport chain plasticity. Antioxid Redox Signal 38:57-67. 
https://doi.org/10.1089/ars.2022.0067  

v Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) 
Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. 
Front Biosci (Landmark Ed) 28:61. https://doi.org/10.31083/j.fbl2803061  

w Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in 
Parkinson's disease. Parkinsons Dis 2011:716871. 
https://doi.org/10.4061/2011/716871  

x Kim EH, Koh EH, Park JY, Lee KU (2010) Adenine nucleotide translocator as a regulator of 
mitochondrial function: implication in the pathogenesis of metabolic syndrome. Korean 
Diabetes J 34:146-53. https://doi.org/10.4093/kdj.2010.34.3.146  

y Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R 
(2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase 
dependent H2S oxidation. J Biol Chem 298:101435. 
https://doi.org/10.1016/j.jbc.2021.101435  

z Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. J Biomed 
Sci 16:98. https://doi.org/10.1186/1423-0127-16-98  

α Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang 

https://doi.org/10.1016/B978-0-12-811752-1.1.00007-9
https://doi.org/10.1016/B978-0-12-811752-1.1.00007-9
https://doi.org/10.1016/j.stem.2021.02.011
https://doi.org/10.1152/ajpcell.00131.2021
https://doi.org/10.1155/2018/2426712
https://doi.org/10.1038/s41375-021-01416-w
https://doi.org/10.1007/5584_2017_119
https://doi.org/10.1007/s11011-017-0081-6
https://doi.org/10.20900/immunometab20190011
https://doi.org/10.3390/cells11101598
https://doi.org/10.1007/s00204-021-02974-9
https://doi.org/10.1016/j.redox.2015.08.020
https://doi.org/10.1165/rcmb.2018-0348ED
https://doi.org/10.1089/ars.2022.0067
https://doi.org/10.31083/j.fbl2803061
https://doi.org/10.4061/2011/716871
https://doi.org/10.4093/kdj.2010.34.3.146
https://doi.org/10.1016/j.jbc.2021.101435
https://doi.org/10.1186/1423-0127-16-98


 

 
 
 

Complex II ambiguities 

24 Gnaiger (2023) MitoFit Preprints 2023.3.v3 
 

T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, 
Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for 
diverse biological functions. Mol Cell 61:199-209. 
https://doi.org/10.1016/j.molcel.2015.12.002  

β McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the 
mitochondrial electron transport chain affect redox poise and resistance toward 
Colletotrichum higginsianum. Front Plant Sci 10:1262. 
https://doi.org/10.3389/fpls.2019.01262  

γ McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to 
hypoxia. Exp Cell Res 356:217-22. https://doi.org/10.1016/j.yexcr.2017.03.034  

δ McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ 
regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial 
Complex I dysfunction. Cell Metab 32:301-8.e6. 
https://doi.org/10.1016/j.cmet.2020.06.003  

ε Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as 
suggested by possible proton currents inside the coupling membrane. Open Biol 
9:180221. https://doi.org/10.1098/rsob.180221  

ζ Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial 
biology. J Clin Invest 115:2689-91. https://doi.org/10.1172/JCI26625  

η Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. 
(eds) Encyclopedia of biophysics. Springer, Berlin, Heidelberg. 
https://doi.org/10.1007/978-3-642-16712-6_25  

θ Radogna F, Gerard D, Dicato M, Diederich M (2021) Assessment of mitochondrial cell 
metabolism by respiratory chain electron flow assays. Methods Mol Biol 2276:129-41. 
https://doi.org/10.1007/978-1-0716-1266-8_9  

ι Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron 
transport chain: a dangeROS liaison. Br J Cancer 122:168-81. 
https://doi.org/10.1038/s41416-019-0651-y  

κ Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur 
clusters: Structure, function, and an emerging role in vascular biology. Redox Biol 
47:102164. https://doi.org/10.1016/j.redox.2021.102164 

λ Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, 
Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity 
mechanism in a cellular model of parkinson's disease. Int J Mol Sci 21:E7809. 
https://doi.org/10.3390/ijms21217809  

μ Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST (2018) Potential role of 
coenzyme Q10 in health and disease conditions. Nutrition and Dietary Supplements 
10:1-11. https://doi.org/10.2147/NDS.S112119.  

ν Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier 
R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle 
mitochondria: relationship to efficacy of the respiratory chain. Br J Pharmacol 133:781-8.  
https://doi.org/10.1038/sj.bjp.0704129  

ξ Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang 
X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: 
implications of stem cell therapy. Transl Stroke Res. https://doi.org/10.1007/s12975-
018-0642-y  

ο Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during 
low-oxygen conditions. Antioxid Redox Signal 11:2673-83. 
https://doi.org/10.1089/ars.2009.2730  

π Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial 
and age-related disorders. Clin Transl Med 5:25. https://doi.org/10.1186/s40169-016-
0104-7 

ρ Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on 

https://doi.org/10.1016/j.molcel.2015.12.002
https://doi.org/10.3389/fpls.2019.01262
https://doi.org/10.1016/j.yexcr.2017.03.034
https://doi.org/10.1016/j.cmet.2020.06.003
https://doi.org/10.1098/rsob.180221
https://doi.org/10.1172/JCI26625
https://doi.org/10.1007/978-3-642-16712-6_25
https://doi.org/10.1007/978-1-0716-1266-8_9
https://doi.org/10.1038/s41416-019-0651-y
https://doi.org/10.1016/j.redox.2021.102164
https://doi.org/10.3390/ijms21217809
https://doi.org/10.2147/NDS.S112119
https://doi.org/10.1038/sj.bjp.0704129
https://doi.org/10.1007/s12975-018-0642-y
https://doi.org/10.1007/s12975-018-0642-y
https://doi.org/10.1089/ars.2009.2730


 
 

 

MitoFit 2023.3.v3. https://doi.org/10.26124/mitofit:2023-0003.v3 

www.mitofit.org 25 
 

mitochondria. Int J Mol Sci 21:6344. https://doi.org/10.3390/ijms21176344  
σ Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, 

Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the 
electron transport chain within mitochondria. J Biomed Res Environ Sci 1:105-13. 
https://doi.org/10.37871/jels1127  

τ Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, 
Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The 
biochemical assessment of mitochondrial respiratory chain disorders. Int J Mol Sci 
23:7487. https://doi.org/10.3390/ijms23137487  

υ Vekshin N (2020) Biophysics of mitochondria. Springer Cham:197 pp. 
https://doi.org/10.1007/978-3-030-33853-4   

φ Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular 
electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a 
new bacteria-killing mechanism other than localized surface plasmon resonance or 
microbial fuel cells. ACS Appl Mater Interfaces 8:24509-16. 
https://doi.org/10.1021/acsami.6b10052  

χ Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, 
Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of 
mitochondrial respiration activities using Seahorse XF Analyzer. PLOS ONE 13:e0199938. 
https://doi.org/10.1371/journal.pone.0199938  

ψ Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic 
inflammation: modest benefits and full losses. Oxid Med Cell Longev 2022:8803404. 
https://doi.org/10.1155/2022/8803404  

ω Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial 
dysfunction in sepsis. Mil Med Res 5:41.  https://doi.org/10.1186/s40779-018-0187-0  

 
  

https://doi.org/10.3390/ijms21176344
https://doi.org/10.37871/jels1127
https://doi.org/10.3390/ijms23137487
https://doi.org/10.1007/978-3-030-33853-4
https://doi.org/10.1021/acsami.6b10052
https://doi.org/10.1371/journal.pone.0199938
https://doi.org/10.1155/2022/8803404
https://doi.org/10.1186/s40779-018-0187-0


 

 
 
 

Complex II ambiguities 

26 Gnaiger (2023) MitoFit Preprints 2023.3.v3 
 

Supplement 4 
 

FADH2 as substrate of CII and FAD + 2H+ as products (Figure S4) 
 

   FADH2 ⟶  FAD + 2H+ (2) 
 

 

Figure S4. Complex II ambiguities: FADH2 as substrate of CII and FAD + 2H+ as 
products. Alphabetical sequence of publications from 2001 to 2023. See References for 
Figure S4. 
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FADH2 as substrate of CII and FAD+ as product (Figure S5) 
 

  FADH2 ⟶  FAD+ (3) 
 

 

Figure S5. Complex II ambiguities: FADH2 or FADH as substrate of CII and FAD+ or 
FAD+ + H+ as products. Alphabetical sequence of publications from 2001 to 2023. See 
References for Figure S5. 
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FADH2 or FADH as substrate of CII and FADH, FADH+, or FAD+ as product (Figure S6) 
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Figure S6. Complex II ambiguities: FADH2 as substrate of CII and FADH or FADH+ as 
product. Sequence of publications from 2001 to 2023 according to FAD-a to FAD-h. See 
References for Figure S6. 
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FADH2 or FADH as substrate of CII in websites (Figure S7) 
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Figure S7. Complex II ambiguities in graphical representations on FADH2 as a 
substrate of Complex II in the canonical forward electron transfer. FADH → FAD+H 
(g), FADH2 → FAD+2H+ (a’, c, h-n), and FADH2 → FAD (a, b, d-f, o-θ) should be corrected 
to FADH2 → FAD (Eq. 3b). NADH → NAD+ is frequently written in graphs without showing 
the H+ on the left side of the arrow, except for (p-r). NADH → NAD++H+ (a-g, m), NADH → 
NAD++2H+ (h-l), NADH+H+ → NAD++2H+ (j, k), and NADH → NAD (ι) should be corrected 
to NADH+H+ → NAD+ (Eq. 3a). Weblinks #: (a) 1-5, 8-10; (a’) 6-7; (b) 6-9,11; (c) 10-16,35; 
(d) 17; (e) 18; (f) 19; (g) 20; (h) 21-22; (i) 23; (j) 24; (k) 25; (l) 26; (m) 27; (n) 11,28; (o) 
29; (p) 30-31; (q) 32; (r) 33; (s) 34; (t) 22,35; (u) 36; (v) 6-7; (w) 11; (x) 37; (y) 38; (z) 
39; (α) 40; (β) 11; (γ) 41; (δ) 42; (ε) 43; (ζ) 44; (η) 45; (θ) 46; (ι) 47. 
 

Weblinks for Figure S7 (retrieved 2023-03-21 to 2023-05-04) 
 

1 (a,b) https://openstax.org/books/biology/pages/7-4-oxidative-phosphorylation  - 
OpenStax Biology (CC BY 3.0) - Fig. 7.10 / Fig. 7.12 

2 (a) https://opentextbc.ca/biology/chapter/4-3-citric-acid-cycle-and-oxidative-
phosphorylation/ - Charles Molnar, Jane Gair, Concepts of Biology - 1st Canadian Edition, 
BCcampus - Fig. 4.19a 

3 (a) 
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_Gen
eral_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylat
ion_-_Electron_Transport_Chain - LibreTexts Biology – Fig. 7.11.1 

4 (a) https://www.pharmaguideline.com/2022/01/electron-transport-chain.html -
Pharmaguideline 

5 (a) https://brainbrooder.com/lesson/254/7-4-1-electron-transport-chain - Brain 
Brooder 
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https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/07%3A_Cellular_Respiration/7.11%3A_Oxidative_Phosphorylation_-_Electron_Transport_Chain
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6 (a’,b,v) https://www.khanacademy.org/science/ap-biology/cellular-energetics/cellular-
respiration-ap/a/oxidative-phosphorylation-etc - Khan Academy - Image modified from 
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Supplement 8 
 
Weblinks on FAO and CII (retrieved 2023-03-21 to 2023-05-02) 
 

48 https://conductscience.com/electron-transport-chain/ - Conduct Science: "In Complex II, 
the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH2 to 
FAD+. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." 
- Comments: FAD does not have a postive charge. FADH2 is the reduced form, it is not 
reduced. And again: In CII, FAD is reduced to FADH2. 

49 https://themedicalbiochemistrypage.org/oxidative-phosphorylation-related-
mitochondrial-functions/ - The Medical Biochemistry Page: ‘In addition to transferring 
electrons from the FADH2 generated by SDH, complex II also accepts electrons from the 
FADH2 generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from 
mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate 
shuttle’ (Figure 8d). 

50 
https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%20
2013%20Lecture%2037%20-%2038.pdf - CHM333 LECTURES 37 & 38: 4/27 – 29/13 
SPRING 2013 Professor Christine Hrycyna - Acyl-CoA dehydrogenase is listed under 
'Electron transfer in Complex II'. 

 
  

https://conductscience.com/electron-transport-chain/
https://themedicalbiochemistrypage.org/oxidative-phosphorylation-related-mitochondrial-functions/
https://themedicalbiochemistrypage.org/oxidative-phosphorylation-related-mitochondrial-functions/
https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf
https://www.chem.purdue.edu/courses/chm333/Spring%202013/Lectures/Spring%202013%20Lecture%2037%20-%2038.pdf
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Supplement 9 
 

CII as a proton pump (Figure S9) 
 

 

Figure S9. Complex II as a proton pump. 
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