LOFIL MitoFit Preprints 2021.5

Experimental Communication

Oxygen dependence of photosynthesis and light-enhanced dark respiration studied by High-Resolution PhotoRespirometry

6 Nora Went^{1,2}, Marco Di Marcello¹, ^DErich Gnaiger^{1,3*}

¹Oroboros Instruments, Innsbruck, Austria; ²MCI Management Centre Innsbruck, Austria;
 ³Dept Visceral, Transplant and Thoracic Surgery, D Swarovski Research Laboratory,
 ⁹Medical Univ Innsbruck, Austria

* Corresponding author: <u>erich.gnaiger@oroboros.at</u>

Posted Online 2021-04-30

15 Abstract

13 14

The bioenergetic crosstalk between mitochondria and chloroplasts plays a key role in maintaining metabolic integrity and controlling metabolite production for growth and regulation of cell concentration. Dark respiration and photosynthesis were measured in the green alga *Chlamydomonas reinhardtii* at varying oxygen concentrations and three cell concentrations using the NextGen-O2k with the PhotoBiology Module. Maximum net

photosynthesis at a light intensity of 350 μ mol·s⁻¹·m⁻² (blue light) was inhibited at hyperoxia by 40 % at oxygen concentrations of 550 to 650 μ M. Light-enhanced dark respiration reached a (negative) maximum within 30 to 60 s after light-dark transitions and was 3.5- to 4-fold higher than steady-state dark respiration independent of O₂ concentration in the range of 200 to 650 μ M.

32 *Keywords* – high-resolution respirometry, photosynthesis, dark respiration,
 33 *Chlamydomonas reinhardtii*

34

High-Resolution PhotoRespirometry and cell culture High-Resolution PhotoRespirometry and cell culture

High-resolution respirometry based on the Oroboros O2k is extensively applied to the study of mitochondrial physiology in the biomedical field [1,2]. Real-time oxygen flux was measured using the NextGen-O2k, a two-chamber instrument, in growth medium TRIS at 25 °C. Light intensities (blue) were controlled with the PhotoBiology-Module in the range from 0 to 350 μ mol·s⁻¹·m⁻² (Figure 1). Data were recorded by DatLab 7.4.

Algae were grown photoautotrophically in growth medium TRIS (N- and P-nutrient replete) at 25 °C and a light intensity of 100 μ mol·s⁻¹·m⁻² (16:8 h L:D) [3]. Six cultures (*N*=6) were harvested by centrifugation at 1000 g (10 min) and diluted in TRIS.

1

46 47

1. O₂ flow as a function of the light regime and O₂ concentration

Figure 1. O_2 flow I_{O_2} as a function of the light regime and O_2 concentration c_{O_2} . Superimposed traces of c_{O_2} and I_{O_2} in two O2k-chambers. Maximum net photosynthesis *NP* was obtained at light intensities of 300 to 350 µmol·s⁻¹·m⁻² (vertical numbers).

The net O_2 production rate (net photosynthesis NP) was stimulated from dark respiration DR at normoxia to a maximum by stepwise increments of light (blue light; intensity 10 to 350 µmol·s⁻¹·m⁻²). The compensation point at zero *NP* was between 10 and 20 umol·s⁻¹·m⁻². Light-enhanced dark respiration *LEDR* was a sharp (negative) maximum of respiration immediately after switching off the light (Figure 1).

1a. The O_2 concentration was prevented from reaching severe hyperoxia by intermittently opening the chambers (arrows, air) and continuing the record of O_2 flow per cell I_{O_2} [amol·s⁻¹·x⁻¹] [4].

1b. The O_2 concentration increased in the closed chamber due to *NP*. The decline in maximum *NP* was reversed by lowering the O_2 concentration.

1c. Light-enhanced dark respiration *LEDR* was a sharp (negative) maximum respiratory flux per volume J_{02} [pmol·s⁻¹·mL⁻¹] at 30-60 s after light-dark transitions. Instrumental background *BG* indicated a small transient disturbance of the O₂ signal by switching off the light, which was accounted for in the background correction for O₂ flux.

80 81 82

2. Dark respiration

In each of five culture harvests (experimental replica; N=5), dilution group **G3** was diluted to **G2**. **G2** was diluted further to **G1**. Cell concentration C_{ce} of **G3** was approximately $9 \cdot 10^6 \text{ x} \cdot \text{mL}^{-1}$. Dark respiration *DR* expressed as O_2 flow per cell [amol·s⁻¹·x⁻¹] was independent of C_{ce} . *DR* is shown relative to *DR* of **G3** (Figure 2). *DR* was measured initially at normoxia simultaneously in two technical repeats of three cell dilutions (n=2 repeats × 3 dilution groups; Figure 3).

Figure 2. Dark respiration *DR* measured simultaneously in three cell dilutions, expressed relative to dilution group **G3**.

79

3. Maximum net photosynthesis as a function of cell concentration and 93 **O**₂ concentration 94

A stepwise increase of light intensity (Figure 3; vertical numbers, 10 to 350 umol·s⁻¹·m⁻²) stimulated net photosynthesis NP to a maximum while O_2 concentration increased from 220 µM to 400, 520, and 550 µM depending on cell count per volume in the closed reaction chamber (Figure 3; dilution groups G1 to **G3**).

The lower NP capacity at higher cell concentration was caused by hyperoxic inhibition of photosynthesis (Figure 4).

Figure 3. O₂ flow at different cell concentrations (G1 to G3) determines O₂ concentrations at increasing light intensities in the closed chamber. **Superimposed** traces of oxygen concentration c_{02} and O_2 flow per cell I_{02} in two O2k-chambers. Maximum net photosynthesis *NP* was obtained at light intensities of 300 to 350 µmol·s⁻¹·m⁻² (vertical numbers). DR returned to initial levels 2 h after the LEDR peak.

110

111

112

113

114

Independent of cell concentration, NP was inhibited gradually from normoxia to severe hyperoxia by up to 40 %. There were no consistent differences between measurements in the morning (am) or afternoon (pm; Figure 4).

Light-enhanced dark respiration *LEDR* measured at normoxia and hyperoxia was 3.5- to 4-fold higher than DR. LEDR did not significantly depend on O₂ concentration (Figure 4).

Figure 4. Oxygen dependence of net photosynthesis *NP* and light-enhanced dark respiration LEDR. O₂ flux ratios normalized for DR. Red and green circles: data from Figure 1a and 1b.

128 **Conclusions**

129

130 The decline of net O₂ production under hyperoxia was not caused by compensatory light-

enhanced photorespiration *LEPR*, if *LEDR* is proportional to *LEPR* [5,6], but by inhibition

of photosynthesis at high oxygen concentrations. *LEDR* was 3.5- to 4-fold higher than

- 133 steady-state dark respiration *DR*. *DR* returned to initial levels 2 h after the *LEDR* peak.
- 134

135Acknowledgements136

Presented at ISAP2021 - https://isap2020-phycology.org/. The hardware and electronics of the NextGen-O2k PB-Module was developed in collaboration with WGT-Elektronik GmbH & Co KG. We thank M. Huete-Ortega for technical support. The NextGen-O2k project has received funding from the European Union's Horizon 2020 research and innovation program under the grant agreement No 859770.

144

145Author contributions

- NW and MDM conducted and EG designed the experiment. NW and EG carried out the data analysis and co-
- wrote the manuscript. All authors commented on and approved the manuscript.

150 Conflicts of interest

EG is founder and CEO of Oroboros Instruments, Innsbruck, Austria.

154 Data availability

Original files are available Open Access at Zenodo repository: <u>10.5281/zenodo.4729616</u>
157

45월 Abbreviations

- 160 C_{ce} count concentration of cells [Mx·mL⁻¹]; c_{02} amount concentration of oxygen [μ M]; DR dark respiration;
- Jo2 oxygen flux per volume [pmol·s⁻¹·mL⁻¹]; Jo2 oxygen flow per cell [amol·s⁻¹·x⁻¹]; LEDR light-enhanced dark
 respiration; NP net photosynthesis
- 163

164 **References**

- Doerrier C, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mészáros AT, Gnaiger E (2018) High-Resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. Methods Mol Biol 1782:31-70.
- Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg Commun 2020.2:112 pp. doi:10.26124/bec:2020-0002
- Huete-Ortega M, Di Marcello M, Iglesias-Gonzalez J, Gnaiger E (2020) High-resolution respirometry for chloroplast and mitochondrial bioenergetics in Chlamydomonas reinhardtii – towards biotechnology exploitations. MitoFit Preprint Arch EA. <u>doi:10.26124/mitofit: ea20.algaeurope.0001</u>
- Gnaiger E et al MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1:44 pp. doi:10.26124/bec:2020-0001.v1
- 5. Shimakawa G, Kohara A, Miyake C (2020) Characterization of light-enhanced respiration in cyanobacteria. Int J Mol Sci 22:342. doi: 10.3390/ijms22010342
- 178 6. Xue X, Gauthier DA, Turpin DH, Weger HG (1996) Interactions between photosynthesis and respiration in the green alga *Chlamydomonas reinhardtii*. Characterization of light-enhanced dark respiration. Plant
 189 Physiol 112:1005–14. doi.org/10.1104/pp.112.3.1005

182 Copyright: © 2021 The authors. This is an Open Access preprint (not peer-reviewed) distributed
 183 under the terms of the Creative Commons Attribution License, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original authors and source are

185 credited. © remains with the authors, who have granted MitoFit Preprints an Open Access

186 publication license in perpetuity.

