Buranyi 2017 Guardian

From Bioblast
Jump to navigation Jump to search
Publications in the MiPMap
Buranyi S (2017) Is the staggeringly profitable business of scientific publishing bad for science? Guardian 2017-06-27.

» Open Access

Buranyi Stephen (2017) Guardian

Abstract: Scientists create work under their own direction – funded largely by governments – and give it to publishers for free; the publisher pays scientific editors who judge whether the work is worth publishing and check its grammar, but the bulk of the editorial burden – checking the scientific validity and evaluating the experiments, a process known as peer review – is done by working scientists on a volunteer basis. The publishers then sell the product back to government-funded institutional and university libraries, to be read by scientists – who, in a collective sense, created the product in the first place.

Bioblast editor: Gnaiger E

Selected quotes

  • Despite the narrow audience, scientific publishing is a remarkably big business. With total global revenues of more than £19bn, it weighs in somewhere between the recording and the film industries in size, but it is far more profitable. In 2010, Elsevier’s scientific publishing arm reported profits of £724m on just over £2bn in revenue. It was a 36 % margin – higher than Apple, Google, or Amazon posted that year.
  • In order to make money, a traditional publisher – say, a magazine – first has to cover a multitude of costs: it pays writers for the articles; it employs editors to commission, shape and check the articles; and it pays to distribute the finished product to subscribers and retailers. All of this is expensive, and successful magazines typically make profits of around 12-15 %. The way to make money from a scientific article looks very similar, except that scientific publishers manage to duck most of the actual costs. Scientists create work under their own direction – funded largely by governments – and give it to publishers for free; the publisher pays scientific editors who judge whether the work is worth publishing and check its grammar, but the bulk of the editorial burden – checking the scientific validity and evaluating the experiments, a process known as peer review – is done by working scientists on a volunteer basis. The publishers then sell the product back to government-funded institutional and university libraries, to be read by scientists – who, in a collective sense, created the product in the first place.
  • The publishing business is “perverse and needless”, the Berkeley biologist Michael Eisen wrote in a 2003 article for the Guardian, declaring that it “should be a public scandal”.
  • A 2013 study, for example, reported that half of all clinical trials in the US are never published in a journal.
  • In a 2008 essay, Dr Neal Young of the National Institutes of Health (NIH), which funds and conducts medical research for the US government, argued that, given the importance of scientific innovation to society, “there is a moral imperative to reconsider how scientific data are judged and disseminated”.
  • But by the end of the 1960s, commercial publishing was considered the status quo, and publishers were seen as a necessary partner in the advancement of science. Pergamon helped turbocharge the field’s great expansion by speeding up the publication process and presenting it in a more stylish package. Scientists’ concerns about signing away their copyright were overwhelmed by the convenience of dealing with Pergamon, the shine it gave their work, and the force of Maxwell’s personality. Scientists, it seemed, were largely happy with the wolf they had let in the door.
  • In 1991, to finance his impending purchase of the New York Daily News, Maxwell sold Pergamon to its quiet Dutch competitor Elsevier for £440m (£919m today).
  • These days, given a choice of projects, a scientist will almost always reject both the prosaic work of confirming or disproving past studies, and the decades-long pursuit of a risky “moonshot”, in favour of a middle ground: a topic that is popular with editors and likely to yield regular publications. “Academics are incentivised to produce research that caters to these demands,” said the biologist and Nobel laureate Sydney Brenner in a 2014 interview, calling the system “corrupt.”
  • In a sense, it is not any one publisher’s fault that the scientific world seems to bend to the industry’s gravitational pull. When governments including those of China and Mexico offer financial bonuses for publishing in high-impact journals, they are not responding to a demand by any specific publisher, but following the rewards of an enormously complex system that has to accommodate the utopian ideals of science with the commercial goals of the publishers that dominate it.
  • despite the backing of some of the biggest funding agencies in the world, including the Gates Foundation and the Wellcome Trust, only about a quarter of scientific papers are made freely available at the time of their publication.
  • In recent years, the most radical opposition to the status quo has coalesced around a controversial website called Sci-Hub – a sort of Napster for science that allows anyone to download scientific papers for free. Its creator, Alexandra Elbakyan, a Kazhakstani, is in hiding, facing charges of hacking and copyright infringement in the US. Elsevier recently obtained a $15m injunction (the maximum allowable amount) against her.

Cited by

Gnaiger 2021 Bioenerg Commun


Gnaiger E (2021) Beyond counting papers – a mission and vision for scientific publication. Bioenerg Commun 2021.5. https://doi:10.26124/BEC:2021-0005


Labels:






BEC2021.5