Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information


From Bioblast

high-resolution terminology - matching measurements at high-resolution



In chlororespiration oxygen is consumed by a putative respiratory electron transfer system (ETS) within the thylakoid membrane of the chloroplasts and ATP is produced. It is a process that involves the interaction with the photosynthetic ETS in which NAD(P)H dehydrogenase transfers electrons to oxygen with the assistance of the photosynthetic plastoquinone (PQ), which acts as a non-photochemical redox carrier. Initially described in the unicellular alga Chlamydomonas reindhartdii, chlororespiration was highly disputed for years until the discovery of a NAD(P)H-dehydrogenase (NDH) complex (plastidic encoded) and plastid terminal oxidase (PTOX) (nuclear encoded) in higher-plant chloroplasts. PTOX is homologous to the plant mitochondrial alternative oxidase and has the role of preventing the over-reduction of the PQ pool while the NDH complexes provide a gateway for the electrons to form the ETS and consume oxygen. As a result of this process there is a cyclic electron flow around Photosystem I (PSI) that is activated under stress conditions acting as a photoprotection mechanism and could be involved in protecting against oxidative stress.


  • Quiles MJ (2006) Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant, Cell and Environment. - »Bioblast link«
  • Peltier G, Cournat L (2002) Chlororespiration. Annual Review Plant Biol. - »Bioblast link«
Template NextGen-O2k.jpg


Click to expand or collaps
Bioblast links: PhotoBiology and plant physiology - >>>>>>> - Click on [Expand] or [Collapse] - >>>>>>>

PhotoBiology: photosynthesis

» PhotoBiology
» Photosynthesis

Plant physiology: respiration

» Photorespiration
» Chlororespiration
» Light-enhanced dark respiration

NextGen-O2k and PB-Module

» NextGen-O2k
» PB-Module
» PB-Sensor