Czerniczyniec 2015 J Bioenerg Biomembr

From Bioblast
Jump to: navigation, search
Publications in the MiPMap
Czerniczyniec A, Lanza EM, Karadayian AG, Bustamante J, Lores-Arnaiz S (2015) Impairment of striatal mitochondrial function by acute paraquat poisoning. J Bioenerg Biomembr 47:395-408.

» PMID: 26350412

Czerniczyniec A, Lanza EM, Karadayian AG, Bustamante J, Lores-Arnaiz S (2015) J Bioenerg Biomembr

Abstract: Mitochondria are essential for survival. Their primary function is to support aerobic respiration and to provide energy for intracellular metabolic pathways. Paraquat is a redox cycling agent capable of generating reactive oxygen species. The aim of the present study was to evaluate changes in cortical and striatal mitochondrial function in an experimental model of acute paraquat toxicity and to compare if the brain areas and the molecular mechanisms involved were similar to those observed after chronic exposure. Sprague-Dawley rats received paraquat (25 mg/Kg i.p.) or saline and were sacrificed after 24 h. Paraquat treatment decreased complex I and IV activity by 37 and 21 % respectively in striatal mitochondria. Paraquat inhibited striatal state 4 and state 3 KCN-sensitive respiration by 80 % and 62 % respectively, indicating a direct effect on respiratory chain. An increase of 2.2 fold in state 4 and 2.3 fold in state 3 in KCN-insensitive respiration was observed in striatal mitochondria from paraquat animals, suggesting that paraquat redox cycling also consumed oxygen. Paraquat treatment increased hydrogen peroxide production (150 %), TBARS production (42 %) and cardiolipin oxidation/depletion (12 %) in striatal mitochondria. Also, changes in mitochondrial polarization was induced after paraquat treatment. However, no changes were observed in any of these parameters in cortical mitochondria from paraquat treated-animals. These results suggest that paraquat treatment induced a clear striatal mitochondrial dysfunction due to both paraquat redox cycling reactions and impairment of the mitochondrial electron transport, causing oxidative damage. As a consequence, mitochondrial dysfunction could probably lead to alterations in cellular bioenergetics.

Keywords: Acute paraquat, Membrane potential, Mitochondrial function, Oxygen consumption

O2k-Network Lab: AR Buenos Aires Boveris A


Labels: MiParea: Respiration, Pharmacology;toxicology 


Organism: Rat  Tissue;cell: Nervous system  Preparation: Isolated mitochondria  Enzyme: Complex I, Complex II;succinate dehydrogenase, Complex IV;cytochrome c oxidase 

Coupling state: LEAK, OXPHOS  Pathway: N, ROX  HRR: Oxygraph-2k 

2015-12