Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Hansson 2010 J Biol Chem

From Bioblast
Publications in the MiPMap
Hansson Magnus J, Morota S, Teilum M, Mattiasson G, Uchino H, Elmer E (2010) Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume. J Biol Chem 285:741-50.

Β» PMID: 19880514 Open Access

Hansson Magnus J, Morota S, Teilum M, Mattiasson G, Uchino H, Elmer E (2010) J Biol Chem

Abstract: Modulation of K+ conductance of the inner mitochondrial membrane has been proposed to mediate preconditioning in ischemia-reperfusion injury. The mechanism is not entirely understood, but it has been linked to a decreased activation of mitochondrial permeability transition (mPT). In the present study K+ channel activity was mimicked by picomolar concentrations of valinomycin. Isolated brain mitochondria were exposed to continuous infusions of calcium. Monitoring of extramitochondrial Ca2+ and mitochondrial respiration provided a quantitative assay for mPT sensitivity by determining calcium retention capacity (CRC). Valinomycin and cyclophilin D inhibition separately and additively increased CRC. Comparable degrees of respiratory uncoupling induced by increased K+ or H+ conductance had opposite effects on mPT sensitivity. Protonophores dose-dependently decreased CRC, demonstrating that so-called mild uncoupling was not beneficial per se. The putative mitoK(ATP) channel opener diazoxide did not mimic the effect of valinomycin. An alkaline matrix pH was required for mitochondria to retain calcium, but increased K+ conductance did not result in augmented DeltapH. The beneficial effect of valinomycin on CRC was not mediated by H2O2-induced protein kinase Cepsilon activation. Rather, increased K+conductance reduced H2O2 generation during calcium infusion. Lowering the osmolarity of the buffer induced an increase in mitochondrial volume and improved CRC similar to valinomycin without inducing uncoupling or otherwise affecting respiration. We propose that increased potassium conductance in brain mitochondria may cause a direct physiological effect on matrix volume inducing resistance to pathological calcium challenges. β€’ Keywords: Ischemia-reperfusion injury, K(+) channel, Mitochondrial permeability transition (mPT), Isolated brain mitochondria, Extramitochondrial Ca(2+), Calcium retention capacity (CRC), Uncoupling

β€’ O2k-Network Lab: SE Lund Elmer E, JP Tokyo Uchino H


Labels: MiParea: Respiration 

Stress:Ischemia-reperfusion, Permeability transition  Organism: Rat  Tissue;cell: Nervous system  Preparation: Isolated mitochondria  Enzyme: Inner mt-membrane transporter 

Coupling state: LEAK, OXPHOS, ET 

HRR: Oxygraph-2k, TIP2k 

JP