Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Hervouet 2008 Carcinogenesis

From Bioblast
Publications in the MiPMap
Hervouet E, Cízková A, Demont J, Vojtísková A, Pecina P, Franssen-van Hal NL, Keijer J, Simonnet H, Ivánek R, Kmoch S, Godinot C, Houstek J (2008) HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. Carcinogenesis 29:1528-37.

» PMID: 18515279 Open Access

Hervouet E, Cizkova A, Demont J, Vojtiskova A, Pecina P, Franssen-van Hal NL, Keijer J, Simonnet H, Ivanek R, Kmoch S, Godinot C, Houstek J (2008) Carcinogenesis

Abstract: A decrease in oxidative phosphorylation (OXPHOS) is characteristic of many cancer types and, in particular, of clear cell renal carcinoma (CCRC) deficient in von Hippel–Lindau (vhl) gene. In the absence of functional pVHL, hypoxia-inducible factor (HIF) 1-α and HIF2-α subunits are stabilized, which induces the transcription of many genes including those involved in glycolysis and reactive oxygen species (ROS) metabolism. Transfection of these cells with vhl is known to restore HIF-α subunit degradation and to reduce glycolytic genes transcription. We show that such transfection with vhl of 786-0 CCRC (which are devoid of HIF1-α) also increased the content of respiratory chain subunits. However, the levels of most transcripts encoding OXPHOS subunits were not modified. Inhibition of HIF2-α synthesis by RNA interference in pVHL-deficient 786-0 CCRC also restored respiratory chain subunit content and clearly demonstrated a key role of HIF in OXPHOS regulation. In agreement with these observations, stabilization of HIF-α subunit by CoCl2 decreased respiratory chain subunit levels in CCRC cells expressing pVHL. In addition, HIF stimulated ROS production and mitochondrial manganese superoxide dismutase content. OXPHOS subunit content was also decreased by added H2O2. Interestingly, desferrioxamine (DFO) that also stabilized HIF did not decrease respiratory chain subunit level. While CoCl2 significantly stimulates ROS production, DFO is known to prevent hydroxyl radical production by inhibiting Fenton reactions. This indicates that the HIF-induced decrease in OXPHOS is at least in part mediated by hydroxyl radical production.


O2k-Network Lab: CZ Prague Houstek J, NL Wageningen Keijer J


Labels: Pathology: Cancer  Stress:Oxidative stress;RONS 



Coupling state: OXPHOS 

HRR: Oxygraph-2k