Krumschnabel 2007 Apoptosis

From Bioblast
Jump to: navigation, search
Publications in the MiPMap
Krumschnabel G, Maehr T, Nawaz M, Schwarzbaum PJ, Manzl C (2007) Staurosporine-induced cell death in salmonid cells: the role of apoptotic volume decrease, ion fluxes and MAP kinase signaling. Apoptosis 12: 1755-1768.

» PMID: 17624593

Krumschnabel G, Maehr T, Nawaz M, Schwarzbaum PJ, Manzl C (2007) Apoptosis

Abstract: Apoptotic cell death in mammalian models is frequently associated with cell shrinkage. Inhibition of apoptotic volume decrease (AVD) is cytoprotective, suggesting that cell shrinkage is an important early event in apoptosis. In salmonid hepatoma and gill cells staurosporine induced apoptosis, as assessed by activation of effector caspases, nuclear condensation, and a decrease of mitochondrial membrane potential (MMP), and these changes were accompanied by cell shrinkage. The Cl- transport inhibitor DIDS and the K+ channel inhibitor quinidine prevented AVD, but only DIDS inhibited apoptosis. Other Cl- flux inhibitors, as well as a pan-caspase inhibitor, did not prevent cell shrinkage, but still prevented caspase activation. Furthermore, regulatory volume decrease (RVD) under hypotonic conditions was not facilitated, but diminished in apoptotic cells. Since all transport inhibitors used blocked RVD, but only DIDS and quinidine inhibited AVD, the ion transporters involved in both processes are apparently not identical. In addition, our data indicate that inhibition of Cl- fluxes rather than blocking cell shrinkage or K+ fluxes is important for preventing apoptosis. In line with this, inhibition of MAP kinases reduced RVD and not AVD, but still diminished caspase activation. Finally, we observed that MAP kinases were activated upon staurosporine treatment and that at least activation of ERK was prevented when AVD was inhibited.

Keywords: Salmonid cells, Apoptotic volume decrease, Chloride flux, Potassium flux, Mitogen-activated protein kinase