Lopez 2017 PLOS ONE

From Bioblast
Jump to: navigation, search
Publications in the MiPMap
López A, Ortiz F, Doerrier C, Venegas C, Fernández-Ortiz M, Aranda P, Díaz-Casado ME, Fernández-Gil B, Barriocanal-Casado E, Escames G, López L, Acuña-Castroviejo D (2017) Mitochondrial impairment and melatonin protection in parkinsonian mice do not depend of inducible or neuronal nitric oxide synthases. PLOS ONE 12:e0183090.

» PMID: 28800639 Open Access

Lopez A, Ortiz F, Doerrier C, Venegas C, Fernandez-Ortiz M, Aranda P, Diaz-Casado ME, Fernandez-Gil B, Barriocanal-Casado E, Escames G, Lopez L, Acuna-Castroviejo D (2017) PLOS ONE

Abstract: MPTP-mouse model constitutes a well-known model of neuroinflammation and mitochondrial failure occurring in Parkinson's disease (PD). Although it has been extensively reported that nitric oxide (NO●) plays a key role in the pathogenesis of PD, the relative roles of nitric oxide synthase isoforms iNOS and nNOS in the nigrostriatal pathway remains, however, unclear. Here, the participation of iNOS/nNOS isoforms in the mitochondrial dysfunction was analyzed in iNOS and nNOS deficient mice. Our results showed that MPTP increased iNOS activity in substantia nigra and striatum, whereas it sharply reduced complex I activity and mitochondrial bioenergetics in all strains. In the presence of MPTP, mice lacking iNOS showed similar restricted mitochondrial function than wild type or mice lacking nNOS. These results suggest that iNOS-dependent elevated nitric oxide, a major pathological hallmark of neuroinflammation in PD, does not contribute to mitochondrial impairment. Therefore, neuroinflammation and mitochondrial dysregulation seem to act in parallel in the MPTP model of PD. Melatonin administration, with well-reported neuroprotective properties, counteracted these effects, preventing from the drastic changes in mitochondrial oxygen consumption, increased NOS activity and prevented reduced locomotor activity induced by MPTP. The protective effects of melatonin on mitochondria are also independent of its anti-inflammatory properties, but both effects are required for an effective anti-parkinsonian activity of the indoleamine as reported in this study.


Bioblast editor: Kandolf G O2k-Network Lab: AT Innsbruck Oroboros, ES Granada Acuna-Castroviejo D


Labels: MiParea: Respiration  Pathology: Parkinson's 

Organism: Mouse 

Preparation: Isolated mitochondria 


Coupling state: LEAK, ROUTINE, OXPHOS  Pathway: N, S, NS  HRR: Oxygraph-2k 

Labels, 2017-10