Morciano 2017 Nat Protoc

From Bioblast
Jump to navigation Jump to search
Publications in the MiPMap
Morciano G, Sarti AC, Marchi S, Missiroli S, Falzoni S, Raffaghello L, Pistoia V, Giorgi C, Di Virgilio F, Pinton P (2017) Use of luciferase probes to measure ATP in living cells and animals. Nat Protoc 12(8):1542-62.

» PMID:28683062

Morciano Giampaolo, Sarti Alba Clara, Marchi Saverio, Missiroli Sonia, Falzoni Simonetta, Raffaghello Lizzia, Pistoia Vito, Giorgi Carlotta, Di Virgilio Francesco, Pinton Paolo (2017) Nat Protoc

Abstract: ATP, the energy exchange factor that connects anabolism and catabolism, is required for major reactions and processes that occur in living cells, such as muscle contraction, phosphorylation and active transport. ATP is also the key molecule in extracellular purinergic signaling mechanisms, with an established crucial role in inflammation and several additional disease conditions. Here, we describe detailed protocols to measure the ATP concentration in isolated living cells and animals using luminescence techniques based on targeted luciferase probes. In the presence of magnesium, oxygen and ATP, the protein luciferase catalyzes oxidation of the substrate luciferin, which is associated with light emission. Recombinantly expressed wild-type luciferase is exclusively cytosolic; however, adding specific targeting sequences can modify its cellular localization. Using this strategy, we have constructed luciferase chimeras targeted to the mitochondrial matrix and the outer surface of the plasma membrane. Here, we describe optimized protocols for monitoring ATP concentrations in the cytosol, mitochondrial matrix and pericellular space in living cells via an overall procedure that requires an average of 3 d. In addition, we present a detailed protocol for the in vivo detection of extracellular ATP in mice using luciferase-transfected reporter cells. This latter procedure may require up to 25 d to complete.


Bioblast editor: Cardoso Luiza HD


Cited by

  • Cardoso et al (2021) Magnesium Green for fluorometric measurement of ATP production does not interfere with mitochondrial respiration. MitoFit Preprints 2021.1. doi:10.26124/mitofit:2021-0001


Labels:






MitoFit 2021 MgG