NextGen-O2k Technical developments

From Bioblast
Jump to: navigation, search


NextGen-O2k         K-Regio MitoFit         O2k-Innovation         Houska-Award 2012         K-Regio MitoCom         Bioblast 2012


NextGen-O2k Technical developments

NextGen-O2k

The revolutionary all-in-one instrument to conquer mitochondrial disease.


WP1: Technical developments



Abstract

In this workpackage the Q- and PB-Modules are developed for the NextGen-O2k.
  • Development of the Q-Module and PB-Module and integration in the NextGen-O2k
  • Testing of the NextGen-O2k in collaboration with the Early testers
  • Testing and development of the software for the NextGen-O2k Modules
  • Integration of the new protocols in the DatLab software



Progress and next steps

2020-05-25: Project partner WGT begins designing a new type of sensor tip that protects the LEDs and helps with the maintenance of the PB-Sensors
2020-05-20: First tests of the PB-Module in the Q3-003 and Q3-004
2020-05-04: Third (Q3-003) and fourth (Q3-004) NextGen-O2k with the PB-Module integrated delivered for in-house testing
2020-04-27: First tests of the PB-Module in the Q3-002
2020-04-02: Start of the Quality Control tests in the Q3-002
2020-03-11: First tests of the PB-Module run in the Q3-001
2020-03-05: Second prototype (Q3-002) with integrated PB-Module received for in-house testing
2020-02-11: First prototype of NextGen-O2k (Q3-001) with integrated PB-Module received for in-house testing
2020-02-14: Dispatch of 2 prototypes for testing at Marten Szibor’s lab in Jena, DE and Carlo Viscomi’s Lab in Padua, IT
2020-02-11: Second set of feedback from the Key Opinion Leaders on the NextGen-O2k with the Q-Module received
2020-01-10: First feedback from the Key Opinion Leaders on the NextGen-O2k with the Q-Module received
2019-12-18: Final type of LEDs and wavelengths to be integrated in the PB-Module are confirmed
2019-11-31: New software for the quality control by cyclic voltammetry (Q-Module) sent to KOLs
2019-11-06: Dispatch of 1 prototype for testing at Anthony Molina’s Lab in San Diego, US
2019-10-29: Dispatch of 1 prototype for testing at Anthony Moore’s Lab in Sussex, UK
2019-10-16: Dispatch of 1 prototype for testing at Christos Chinopoulos’ Lab in Budapest, HU
2019-10-22: DatLab7.4 released
2019-10: Calibration of the light intensity provided by the PB-Sensors prototypes.
2019-09: 5 prototypes of the Q-Module ready for testing at our Key Opinion Leader’s labs
2019-08-07: Setting up of our lab for algae culturing activities started
2019-06-13: Start of testing the PB-Sensors prototypes at Oroboros
2019-06: Delivery of the first PB-Sensors prototypes by WGT to test at Oroboros
2019-06: Integration of cyclic voltammetry as a quality control step into the Q-Module
2019-06: Final version of the specific Q-Stopper (with integrated electronics) confirmed


Links and references

MitoPedia: NextGen-O2k

» NextGen-O2k«
TermAbbreviationDescription
ChlororespirationChlororespiration is the phenomenon by which oxygen is consumed by a putative respiratory electron transfer chain (ETC) within the thylakoid membrane of the chloroplasts and ATP is produced. It is a process that involves the interaction with the photosynthetic ETC in which the NAD(P)H dehydrogenase enzyme transfers electrons to oxygen molecules with the assistance of the photosynthetic Plastoquinone (PQ), which acts as a non-photochemical redox carrier. Initially described in the unicellular alga Chlamydomonas reindhartdii, chlororespiration was highly disputed for years until the discovery of a NAD(P)H-dehydrogenase (Ndh) complex (plastidic encoded) and plastid terminal oxidase (PTOX) (nuclear encoded) in higher-plant chloroplasts. The PTOX, which is homologous to the plant mitochondrial alternative oxidase, has the role of preventing the over-reduction of the PQ pool while the Ndh complexes provide a gateway for the electrons to form the ETC and consume oxygen. As a result of this process there is a cyclic electron flow around the Photosystem I (PSI) that has been reported to be activated under stress conditions acting as a photoprotection mechanism and could be involved in protecting against any other stress that implies the increase of ROS formation.
Hydrogen peroxideH2O2
Hydrogen peroxide
Hydrogen peroxide, H2O2 or dihydrogen dioxide, is one of several reactive oxygen intermediates generally referred to as reactive oxygen species (ROS). It is formed in various enzyme-catalyzed reactions (e.g., superoxide dismutase) with the potential to damage cellular molecules and structures. H2O2 is dismutated by catalase to water and oxygen. H2O2 is produced as a signaling molecule in aerobic metabolism and passes membranes more easily compared to other ROS.
Mitochondrial membrane potentialmtMP, Δψ [V]The mitochondrial membrane potential, mtMP, is the electric part of the protonmotive force, ΔpH+.

Δψ = ΔpH+ - ΔµH+ / F

mtMP or Δψ is the potential difference across the inner mitochondrial (mt) membrane, expressed in the electric unit of volt [V]. Electric force of the mitochondrial membrane potential is the electric energy change per ‘motive’ electron or per electron moved across the transmembrane potential difference, with the number of ‘motive’ electrons expressed in the unit coulomb [C].
NextGen-O2k
NextGen-O2k InstrumentNextGen-O2k Instrument
NextGen-O2k Technical developments
Oxygen kineticsOxygen kinetics describes the dependence of respiration of isolated mitochondria or cells on oxygen partial pressure. Frequently, a strictly hyperbolic kinetics is observed, with two parameters, the oxygen pressure at half-maximum flux, p50, and maximum flux, Jmax. The p50 is in the range of 0.2 to 0.8 kPa for cytochrome c oxidase, isolated mitochondria and small cells, strongly dependent on Jmax and coupling state.
PhotoBiologyPBPhotoBiology is the scientific study of the beneficial or harmful effects of light, understood as non-ionizing radiation (i.e. ultraviolet, visible and infrared radiation) on living organisms. It includes topics such as the study of photosynthesis, photochemistry, photophysics, photomorphogenesis, vision, bioluminescence, circadian rhythms and photodynamic therapy. Non-ionizing (or non-ionising) radiation is any type of electromagnetic radiation that does not carry enough energy per quantum (photon energy below 10 eV) to completely remove an electron from an atom or molecule. When photons contact molecules, the molecules can absorb the photon energy and become excited, reacting with surrounding molecules and stimulating "photochemical" and "photophysical" changes.
PhotosynthesisPSPhotosynthesis is the process used by plants and other organisms that converts light (mostly solar) energy into chemical energy which is subsequently released to fuel organisms' activities. It has two phases: the light-dependent phase and the light-independent (dark) phase. In plants, algae, and cynobacteria, light energy is absorbed during the light phase by the pigment called Chlorophyll and used to split water and generate short-term stores of chemical energy - adenosine triphosphate (ATP), and reducing power - nicotinamide adenine dinucleotide phosphate (NADPH), with the net production of O2 gas as a waste product. And during the dark phase this chemical energy and reducing power are used to synthesize organic matter from the atmospheric CO2 in the form of carbohydrates or sugars through the metabolic pathway called Calvin cycle. The whole process is what is called oxygenic photosynthesis and is responsible for producing and maintaining the oxygen concentration of the Earth’s atmosphere. In bacteria such as the cyanobacteria photosynthesis involves the plasma membrane and the cytoplasm, and in Eukaryotic cells (plants and algae) photosynthesis takes place inside organelles called chloroplasts.
Q redox stateQQ redox state


Labels:






MitoPedia:NextGen-O2k