Browse wiki

Jump to: navigation, search
Sundstroem 2015 PhD Thesis
Coupling states ET  +
Diseases Cancer  +
Has abstract Melanoma patients carry a high risk of dev
Melanoma patients carry a high risk of developing brain metastases and improvements in survival are still measured in weeks or months. The aim of this thesis was to study the biology of melanoma brain metastasis and find new therapeutic approaches. In Paper I, we reviewed the current literature on animal models of brain metastasis. Many models are available and have provided valuable insights, but technical and biologic limitations have hampered clinical translation. In Paper II, we reported on the development and validation of a new experimental brain metastasis model. This model featured MRI-based automated quantification of nanoparticle-labeled melanoma cells in the mouse brain after intracardiac injection. We proposed that this model could help to increase the reproducibility and predictivity of mechanistic and therapeutic studies of melanoma brain metastasis. In Paper III, we examined the temporal, spatial and functional significance of lactate dehydrogenase A (LDHA) in melanoma brain metastasis. We found that LDHA expression was hypoxia-dependent, but did not affect tumor progression or survival ''in vivo'' or in a large patient cohort. In Paper IV, we applied genomics-based drug repositioning and carried out a comprehensive ''in vitro'' and ''in vivo'' screening of potential anti-melanoma brain metastasis compounds. We found the cholesterol analogue β-sitosterol to inhibit the growth of brain metastases and improve survival in established and preventive scenarios across several ''in vivo'' models. β-sitosterol provided broad-spectrum suppression of the important mitogen-activated protein kinase (MAPK) pathway and reduced mitochondrial respiration through Complex I inhibition. Notably, increased mitochondrial respiration is a key mediator of intrinsic and acquired resistance to established MAPK-targeted therapies. Together, Papers I and II showed that the study of melanoma biology and brain metastasis requires reproducible and predictive animal models. By applying such models in Papers III and IV, we revealed novel insights into the biology and therapy of melanoma brain metastasis, and suggested that mitochondrial respiration might play an imperative role in tumor progression and treatment resistance.
umor progression and treatment resistance.  +
Has info [ Open access]  +
Has title Sundstrøm T (2015) Experimental modeling and novel therapeutic strategies in melanoma brain metastasis. PhD Thesis 1-146.  +
Instrument and method Oxygraph-2k  +
Mammal and model Mouse  +
MiP area Respiration  + , Patients  + , Pharmacology;toxicology  +
Pathways N  + , S  + , NS  + , ROX  +
Tissue and cell Nervous system  +
Was published in journal PhD Thesis +
Was published in year 2015  +
Was written by Sundstroem T +
Categories Publications
Modification date
"Modification date" is a predefined property that corresponds to the date of the last modification of a subject and is provided by Semantic MediaWiki.
14:15:44, 13 November 2017  +
hide properties that link here 
  No properties link to this page.
Enter the name of the page to start browsing from.