Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Baglivo 2022 MitoFit-QC"

From Bioblast
Line 2: Line 2:
{{MitoFit page name}}
{{MitoFit page name}}
{{Publication
{{Publication
|title=Baglivo E, Cardoso LHD, Cecatto C, Gnaiger E (2022) Statistical analysis of instrumental reproducibility as internal quality control in high-resolution respirometry. https://doi.org/10.26124/mitofit:2022-0018.v2 2022-08-04 Published in [https://doi.org//10.26124/bec:2022-0008 »'''Bioenergetics Communications 2022.8'''«]
|title=Baglivo E, Cardoso LHD, Cecatto C, Gnaiger E (2022) Statistical analysis of instrumental reproducibility as internal quality control in high-resolution respirometry. https://doi.org/10.26124/mitofit:2022-0018.v2 — ''2022-08-04 published in [https://doi.org//10.26124/bec:2022-0008 '''Bioenerg Commun 2022.8.''']''
|info=MitoFit Preprints 2022.18. [[File:MitoFit Preprints pdf.png|left|160px|link=https://wiki.oroboros.at/images/c/c8/Baglivo_2022_MitoFit-QC.pdf|MitoFit pdf]] [https://wiki.oroboros.at/images/c/c8/Baglivo_2022_MitoFit-QC.pdf Statistical analysis of instrumental reproducibility as internal quality control in high-resolution respirometry] [[File:WatchThePresentationYoutube_icon.jpg|200px|link=https://www.youtube.com/watch?v=mNSu-hY3hUg&t=15s|»''Watch the presentation''«]]
|info=MitoFit Preprints 2022.18. [[File:MitoFit Preprints pdf.png|left|160px|link=https://wiki.oroboros.at/images/c/c8/Baglivo_2022_MitoFit-QC.pdf|MitoFit pdf]] [https://wiki.oroboros.at/images/c/c8/Baglivo_2022_MitoFit-QC.pdf Statistical analysis of instrumental reproducibility as internal quality control in high-resolution respirometry] [[File:WatchThePresentationYoutube_icon.jpg|200px|link=https://www.youtube.com/watch?v=mNSu-hY3hUg&t=15s|»''Watch the presentation''«]]
|authors=Baglivo Eleonora, Cardoso Luiza HD, Cecatto Cristiane, Gnaiger Erich
|authors=Baglivo Eleonora, Cardoso Luiza HD, Cecatto Cristiane, Gnaiger Erich

Revision as of 23:24, 22 November 2022

Bioblast2022 banner.jpg


MitoFit Preprints         MitoFit Preprints        
Gnaiger 2019 MitoFit Preprints
       
Gnaiger MitoFit Preprints 2020.4
        MitoFit DOI Data Center         MitoPedia: Preprints         Bioenergetics Communications


Baglivo 2022 MitoFit-QC

Publications in the MiPMap
Baglivo E, Cardoso LHD, Cecatto C, Gnaiger E (2022) Statistical analysis of instrumental reproducibility as internal quality control in high-resolution respirometry. https://doi.org/10.26124/mitofit:2022-0018.v22022-08-04 published in Bioenerg Commun 2022.8.

» MitoFit Preprints 2022.18.

MitoFit pdf

Statistical analysis of instrumental reproducibility as internal quality control in high-resolution respirometry »Watch the presentation«

Baglivo Eleonora, Cardoso Luiza HD, Cecatto Cristiane, Gnaiger Erich (2022-05-09) MitoFit Prep

Abstract:

Version 2 (v2) 2022-05-09 doi:10.26124/mitofit:2022-0018.v2
Version 1 (v1) 2022-05-05 doi:10.26124/mitofit:2022-0018.v1 - »Link to all versions«
Graphical abstract

Baglivo 2022 Abstract Bioblast: Evaluation of instrumental reproducibility is a primary component of quality control to quantify the precision and limit of detection of analytical procedures. A pre-analytical instrumental standard operating procedure (SOP) is implemented in high-resolution respirometry consisting of: (1) a daily SOP-POS for air calibration of the polarographic oxygen sensor (POS) in terms of oxygen concentration cO2 [µM]. This is part of the sensor test to evaluate POS performance; (2) a monthly SOP-BG starting with the SOP-POS followed by the chamber test quantifying the instrumental O2 background. The chamber test focuses on the slope dcO2/dt [pmol∙s−1∙mL−1] to determine O2 consumption by the POS and O2 backdiffusion into the chamber as a function of cO2 in the absence of sample. Finally, zero O2 calibration completes the sensor test.

We applied this SOP in a 3-year study using 48 Oroboros O2k chambers. Stability of air and zero O2 calibration signals was monitored throughout intervals of up to 8 months without sensor service. Maximum drift over 1 to 3 days was 0.06 pmol∙s−1∙mL−1, without persistence over time since drift was <0.004 pmol∙s−1∙mL−1 for time intervals of one month, corresponding to a drift per day of 0.2 % of the signal at air saturation. Instrumental O2 background -dcO2/dt was stable within ±1 pmol∙s−1∙mL−1 when measured at monthly intervals. These results confirm the instrumental limit of detection of volume-specific O2 flux at ±1 pmol∙s−1∙mL−1. The instrumental SOP applied in the present study contributes to the generally applicable internal quality control management ensuring the unique reproducibility in high-resolution respirometry.


O2k-Network Lab: AT Innsbruck Oroboros

ORCID:ORCID.png Baglivo Eleonora ORCID.png Cardoso Luiza HD, ORCID.png Cecatto Cristiane, ORCID.png Gnaiger Erich

Data availability

Original files are available Open Access at Zenodo repository: https://doi.org/10.26124/mitofit:2022-0018

References

LinkReferenceYearView
Amaral OB, Neves K (2021) Reproducibility: expect less of the scientific paper. Nature 597:329-31. https://doi.org/10.1038/d41586-021-02486-72021PMID: 34526702 Open Access
Brookman B, Mann I, eds (2021) Eurachem guide: selection, use and interpretation of proficiency testing (PT) schemes (3rd ed). Eurachem Available from www.eurachem.org.2021Open Access
Doerrier C, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mészáros AT, Gnaiger E (2018) High-Resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. Methods Mol Biol 1782:31-70. https://doi.org/10.1007/978-1-4939-7831-1_32018PMID: 29850993 »O2k-brief
O2k-Protocols
Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. https://doi.org/10.1016/S0034-5687(01)00307-32001Bioblast pdf
Respir Physiol 128:277-97. PMID: 11718759
Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In: Mitochondrial dysfunction in drug-induced toxicity (Dykens JA, Will Y, eds) John Wiley & Sons, Inc, Hoboken, NJ:327-52.2008Bioblast pdf
O2k-Protocols contents
Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg Commun 2020.2. https://doi.org/10.26124/bec:2020-00022020Open Access pdf published online 2020-12-30

Gnaiger E (2021) Bioenergetic cluster analysis – mitochondrial respiratory control in human fibroblasts. MitoFit Preprints 2021.08. https://doi.org/10.26124/mitofit:2021-00082021MitoFit Preprints 2021.08.
MitoFit pdf
Bioenergetic cluster analysis – mitochondrial respiratory control in human fibroblasts
Gnaiger E, Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Steurer W, Margreiter R (2000) Mitochondria in the cold. In: Life in the Cold (Heldmaier G, Klingenspor M, eds) Springer, Berlin, Heidelberg:431-42. https://doi.org/10.1007/978-3-662-04162-8_452000Bioblast pdf - Springer link
O2k-Protocols contents
Horan MP, Pichaud N, Ballard JWO (2012) Review: Quantifying mitochondrial dysfunction in complex diseases of aging. J Gerontol A Biol Sci Med Sci 67:1022-35. https://doi.org/10.1093/gerona/glr2632012PMID: 22459622 Open Access
Perry CG, Kane DA, Lanza IR, Neufer PD (2013) Methods for assessing mitochondrial function in diabetes. Diabetes 62:1041-53. https://doi.org/10.2337/db12-12192013PMID: 23520284 Open Access
Pesta D, Gnaiger E (2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25-58. https://doi.org/10.1007/978-1-61779-382-0_32012PMID: 22057559
Bioblast pdf
O2k-Protocols
Schmidt CA, Fisher-Wellman KH, Neufer PD (2021) From OCR and ECAR to energy: perspectives on the design and interpretation of bioenergetics studies. J Biol Chem 207:101140. https://doi.org/10.1016/j.jbc.2021.1011402021PMID: 34461088 Open Access
Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. https://doi.org/10.1371/journal.pone.01999382018PLOS ONE 13:e0199938. PMID: 29995917 Open Access
Zdrazilova L, Hansikova H, Gnaiger E (2022) Comparable respiratory activity in attached and suspended human fibroblasts. https://doi.org/10.1371/journal.pone.02644962022PLoS ONE 17:e0264496. PMID: 35239701 Open Access
Zhang J, Nuebel E, Wisidagama DR, Setoguchi K, Hong JS, Van Horn CM, Imam SS, Vergnes L, Malone CS, Koehler CM, Teitell MA (2012) Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. https://doi.org/10.1038/nprot.2012.0482012Nat Protoc 7: 1068-85. PMID: 22576106 Open Access
Oroboros
O2k-specifications for respirometry and comprehensive OXPHOS analysis.
2024-03-26Bioblast pdf » Versions
O2k-Manual
O2k Quality Control 1: Polarographic oxygen sensors and accuracy of calibration.
2023-02-06Bioblast pdf  » Versions
O2k-Manual
Service of the polarographic oxygen sensor OroboPOS.
2021-06-23Bioblast pdf »Versions
O2k-Manual
O2k Quality Control 2: Instrumental oxygen background correction and accuracy of oxygen flux.
2023-10-19Bioblast pdf » Versions
O2k-Manual
O2k-Chamber cleaning SOP and Integrated Suction System (ISS).
2023-03-14Bioblast pdf » Versions

Support

This work was part of the Oroboros NextGen-O2k project, with funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 859770.


Labels: MiParea: Respiration, Instruments;methods 


Tissue;cell: HEK 



HRR: Oxygraph-2k, O2k-Protocol 

Bioblast 2022, SUIT-001 O2 ce-pce D003