Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Boushel 2011 Mitochondrion"

From Bioblast
Line 10: Line 10:
}}
}}
{{Labeling
{{Labeling
|area=Respiration, mt-Biogenesis; mt-density, Exercise physiology; nutrition; life style
|organism=Human
|organism=Human
|tissues=Skeletal muscle
|tissues=Skeletal muscle
|preparations=Intact Organism, Permeabilized tissue
|preparations=Intact Organism, Permeabilized tissue
|topics=mt-Biogenesis; mt-density
|couplingstates=OXPHOS
|couplingstates=OXPHOS
|substratestates=CI+II
|substratestates=CI+II

Revision as of 16:05, 10 August 2013

Publications in the MiPMap
Boushel RC, Gnaiger E, Calbet JA, Gonzalez-Alonso J, Wright-Paradis C, Sondergaard H, Ara I, Helge JW, Saltin B (2011) Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans. Mitochondrion 11: 303-307.

Β» PMID 21147270

Boushel RC, Gnaiger E, Calbet JA, Gonzalez-Alonso J, Wright-Paradis C, Sondergaard H, Ara I, Helge JW, Saltin B (2011) Mitochondrion

Abstract: Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2)max) is matched to muscle tissue-specific OXPHOS capacity (State 3 respiration. High-resolution respirometry was used to quantify mitochondrial respiration from the biopsies of arm and leg muscles while in-vivo arm and leg VO(2) were determined by the Fick method during leg cycling and arm cranking. We hypothesized that muscle mitochondrial respiratory rate exceeds that of systemic oxygen delivery. OXPHOS capacity of the deltoid muscle (4.3Β±0.4 mmol O(2)kg(-1)min(-1)) was similar to the in-vivo VO(2) during maximal arm cranking (4.7Β±0.5 mmol O(2)kg(-1)min(-1)) with 6 kg muscle. In contrast, the mitochondrial OXPHOS capacity of the quadriceps was 6.9Β±0.5 mmol O(2)kg(-1)min(-1), exceeding the in-vivo leg VO(2)max (5.0Β±0.2mmolO(2)kg(-1)min(-1)) during leg cycling with 20 kg muscle (P<0.05). Thus, when half or more of the body muscle mass is engaged during exercise, muscle mitochondrial respiratory capacity surpasses in-vivo VO(2)max. The findings reveal an excess capacity of muscle mitochondrial respiratory rate over O(2) delivery by the circulation in the cascade defining maximal oxidative rate in humans.


β€’ O2k-Network Lab: DK_Copenhagen_Boushel RC, AT_Innsbruck_Gnaiger E, AT Innsbruck MitoCom


Labels: MiParea: Respiration, mt-Biogenesis; mt-density"mt-Biogenesis; mt-density" is not in the list (Respiration, Instruments;methods, mt-Biogenesis;mt-density, mt-Structure;fission;fusion, mt-Membrane, mtDNA;mt-genetics, nDNA;cell genetics, Genetic knockout;overexpression, Comparative MiP;environmental MiP, Gender, ...) of allowed values for the "MiP area" property., Exercise physiology; nutrition; life style"Exercise physiology; nutrition; life style" is not in the list (Respiration, Instruments;methods, mt-Biogenesis;mt-density, mt-Structure;fission;fusion, mt-Membrane, mtDNA;mt-genetics, nDNA;cell genetics, Genetic knockout;overexpression, Comparative MiP;environmental MiP, Gender, ...) of allowed values for the "MiP area" property. 


Organism: Human  Tissue;cell: Skeletal muscle  Preparation: Intact Organism"Intact Organism" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property., Permeabilized tissue 


Coupling state: OXPHOS 

HRR: Oxygraph-2k