Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Density"

From Bioblast
Line 4: Line 4:
|info=[[BEC 2020.1]], [[Cohen 2008 IUPAC Green Book]]
|info=[[BEC 2020.1]], [[Cohen 2008 IUPAC Green Book]]
}}
}}
== References ==
{{#ask:[[Additional label::Density]]
| mainlabel=Bioblast link
|?Has title=Reference
|?Was published in year=Year
|format=broadtable
|limit=5000
|offset=0
|sort=Has title
|order=ascending
}}
{{MitoPedia concepts
{{MitoPedia concepts
|mitopedia concept=Ergodynamics
|mitopedia concept=Ergodynamics
}}
}}

Revision as of 16:03, 26 May 2020


high-resolution terminology - matching measurements at high-resolution


Density

Description

Density is frequently a quantity divided by volume: mass density or mass concentration is mass per volume, M·V-1 [kg·m-3]; radiant energy density is radiant energy per volume, Q·V-1 [J·m-3]; charge density is charge per volume, Q·V-1 [C·m-3]. However, electric current density is current divided by area, j=I·A-1 [C·m-2]. Number density of entities or number concentration is numbers per volume, CB = NB·V-1 [x·m-3]. In contrast, the amount-of-substance concentration, cB = nB·V-1 [mol·m-3] is not called a substance density (IUPAC). Thus the sample mass concentration is CmX = mX·V-1 [kg·m-3], the mitochondrial concentration is CmtE = mtE·V-1 [mtEU·m-3], whereas the specific mitochondrial density is DmtE = mtE·mX-1 [mtEU·kg-1], and the mitochondrial content per object X is mtENX = mtE·NX-1 [mtEU·x-1] (BEC 2020.1).

Abbreviation: ρ, C, D

Reference: BEC 2020.1, Cohen 2008 IUPAC Green Book

References

Bioblast linkReferenceYear
Bureau International des Poids et Mesures (2019) The International System of Units (SI). 9th edition:117-216. ISBN 978-92-822-2272-02019
Cohen ER, Cvitas T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor HL (2008) Quantities, Units and Symbols in Physical Chemistry. IUPAC Green Book 3rd Edition, 2nd Printing, IUPAC & RSC Publishing, Cambridge.2008
Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg Commun 2020.2. https://doi.org/10.26124/bec:2020-00022020
Gnaiger E (2021) The elementary unit — canonical reviewer's comments on: Bureau International des Poids et Mesures (2019) The International System of Units (SI) 9th ed. https://doi.org/10.26124/mitofit:200004.v22021
Gnaiger E et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. https://doi.org/10.26124/bec:2020-0001.v12020


MitoPedia concepts: Ergodynamics