Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Fatty acid oxidation"

From Bioblast
Line 1: Line 1:
{{MitoPedia
{{MitoPedia
|abbr=FAO
|abbr=FAO
|description='''Fatty acid oxidation''' (ÎČ-oxidation) is a multi-step process by which [[fatty acid]]s are broken down to generate acetyl-CoA, NADH and FADH<sub>2</sub> for further energy production. Fatty acids (short chain with 4–8, medium-chain with 6–12, long chain with 14-22 carbon atoms) are activated by fatty acyl-CoA synthases (thiokinases) in the cytosol. The outer mt-membrane enzyme [[carnitine palmitoyltransferase I]] (CPT 1) generates an acyl-carnitine intermediate for transport into the mt-matrix. [[Octanoate]], but not [[palmitate]], (eight- and 16-carbon saturated fatty acids) may pass the mt-membranes, but both are frequently supplied to mt-preparations in the activated form of [[octanoylcarnitine]] or [[palmitoylcarnitine]].
|description='''Fatty acid oxidation''' (ÎČ-oxidation) is a multi-step process by which [[fatty acid]]s are broken down to generate acetyl-CoA, NADH and FADH<sub>2</sub> for further energy transformation. Fatty acids (short chain with 4–8, medium-chain with 6–12, long chain with 14-22 carbon atoms) are activated by fatty acyl-CoA synthases (thiokinases) in the cytosol. The mt-outer membrane enzyme [[carnitine palmitoyltransferase I]] (CPT 1) generates an acyl-carnitine intermediate for transport into the mt-matrix. [[Octanoate]], but not [[palmitate]], (eight- and 16-carbon saturated fatty acids) may pass the mt-membranes, but both are frequently supplied to mt-preparations in the activated form of [[octanoylcarnitine]] or [[palmitoylcarnitine]]. [[Electron-transferring flavoprotein complex]] (CETF) is located on the matrix face of the mt-inner membrane, and supplies electrons from fatty acid ÎČ-oxidation (FAO) to CoQ.
 
|info=[[Gnaiger 2019 MitoPathways]]
[[Electron-transferring flavoprotein complex]] (CETF) is located on the matrix face of the inner mt-membrane, and supplies electrons from fatty acid ÎČ-oxidation (FAO) to CoQ. FAO cannot proceed without a substrate combination of fatty acids & [[malate]], and inhibition of CI blocks FAO completely. Fatty acids are split stepwise into two carbon fragments forming acetyl-CoA, which enters the TCA cycle by condensation with oxaloacetate (CS reaction). Therefore, FAO implies simultaneous electron transfer into the [[Q-junction]] through CETF and CI.
|info=[[Gnaiger 2014 MitoPathways]]
}}
{{MitoPedia methods
|mitopedia method=Respirometry
}}
{{MitoPedia topics
|mitopedia topic=Substrate and metabolite
}}
}}
__TOC__
{{Technical support integrated}}
[[Talk:Fatty acid oxidation]]
== FAO and [[HRR]] ==


__TOC__
:::: FAO cannot proceed without a substrate combination of fatty acids & [[malate]], and inhibition of CI blocks FAO completely. Fatty acids are split stepwise into two carbon fragments forming acetyl-CoA, which enters the TCA cycle by condensation with oxaloacetate (CS reaction). Therefore, FAO implies simultaneous electron transfer into the [[Q-junction]] through CETF and CI.


== FAO and [[HRR]] ==
{{Technical support integrated}} [[Talk:Fatty acid oxidation]]
:::: Studies with FAO in mt-preparations are conducted with mitochondrial respiration media (MiR05Cr, [[MiR06]], etc.) with fatty acid-free [[BSA]] <ref> Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–38. [[Lemieux 2011 Int J Biochem Cell Biol |»Bioblast Access«]] </ref>, <ref> Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–87. [[Pesta 2011 Am J Physiol Regul Integr Comp Physiol |»Open Access«]] </ref>, <ref> Pesta D, Gnaiger E (2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibres from small biopsies of human muscle. Methods Mol Biol 810:25-58. [[Pesta 2012 Methods Mol Biol |»Bioblast Access«]] </ref>.
:::: Studies with FAO in mt-preparations are conducted with mitochondrial respiration media (MiR05Cr, [[MiR06]], etc.) with fatty acid-free [[BSA]] <ref> Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–38. [[Lemieux 2011 Int J Biochem Cell Biol |»Bioblast Access«]] </ref>, <ref> Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–87. [[Pesta 2011 Am J Physiol Regul Integr Comp Physiol |»Open Access«]] </ref>, <ref> Pesta D, Gnaiger E (2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibres from small biopsies of human muscle. Methods Mol Biol 810:25-58. [[Pesta 2012 Methods Mol Biol |»Bioblast Access«]] </ref>.
    
    
Line 31: Line 25:
:» [[Talk:Fatty acid oxidation |O2k-Network discussion forum: fatty acids used in permeabilized fibre assays]]
:» [[Talk:Fatty acid oxidation |O2k-Network discussion forum: fatty acids used in permeabilized fibre assays]]
:» [[F-pathway control state]]
:» [[F-pathway control state]]
{{MitoPedia methods
|mitopedia method=Respirometry
}}
{{MitoPedia topics
|mitopedia topic=Substrate and metabolite
}}

Revision as of 14:11, 7 November 2019


high-resolution terminology - matching measurements at high-resolution


Fatty acid oxidation

Description

Fatty acid oxidation (ÎČ-oxidation) is a multi-step process by which fatty acids are broken down to generate acetyl-CoA, NADH and FADH2 for further energy transformation. Fatty acids (short chain with 4–8, medium-chain with 6–12, long chain with 14-22 carbon atoms) are activated by fatty acyl-CoA synthases (thiokinases) in the cytosol. The mt-outer membrane enzyme carnitine palmitoyltransferase I (CPT 1) generates an acyl-carnitine intermediate for transport into the mt-matrix. Octanoate, but not palmitate, (eight- and 16-carbon saturated fatty acids) may pass the mt-membranes, but both are frequently supplied to mt-preparations in the activated form of octanoylcarnitine or palmitoylcarnitine. Electron-transferring flavoprotein complex (CETF) is located on the matrix face of the mt-inner membrane, and supplies electrons from fatty acid ÎČ-oxidation (FAO) to CoQ.

Abbreviation: FAO

Reference: Gnaiger 2019 MitoPathways


Template NextGen-O2k.jpg


MitoPedia O2k and high-resolution respirometry: O2k-Open Support 



Talk:Fatty acid oxidation

FAO and HRR

FAO cannot proceed without a substrate combination of fatty acids & malate, and inhibition of CI blocks FAO completely. Fatty acids are split stepwise into two carbon fragments forming acetyl-CoA, which enters the TCA cycle by condensation with oxaloacetate (CS reaction). Therefore, FAO implies simultaneous electron transfer into the Q-junction through CETF and CI.
Studies with FAO in mt-preparations are conducted with mitochondrial respiration media (MiR05Cr, MiR06, etc.) with fatty acid-free BSA [1], [2], [3].
The use of fatty-acid free BSA is very important when providing fatty acids in vitro, to buffer the free FA concentration and thus avoid FFA toxicity [4].
Gnaiger E, 2015-05-15


SUITbrowser question: Fatty acid oxidation

SUIT protocols can assess the respiration stimulated by fatty acid oxidation, with the participation of the electron-transferring flavoprotein complex.
The SUITbrowser can be used to find the best SUIT protocols to answer this and other research questions.

References

  1. ↑ Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–38. »Bioblast Access«
  2. ↑ Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–87. »Open Access«
  3. ↑ Pesta D, Gnaiger E (2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibres from small biopsies of human muscle. Methods Mol Biol 810:25-58. »Bioblast Access«
  4. ↑ Oliveira AF, Cunha DA, Ladriere L, Igoillo-Esteve M, Bugliani M, Marchetti P, Cnop M (2015) In vitro use of free fatty acids bound to albumin: A comparison of protocols. Biotechniques 58:228-33. »Open Access«
» O2k-Network discussion forum: fatty acids used in permeabilized fibre assays
» F-pathway control state


MitoPedia methods: Respirometry 


MitoPedia topics: Substrate and metabolite