Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Glutamate"

From Bioblast
Line 3: Line 3:
|description=[[File:Glutamic_acid.jpg|left|100px|Glutamic acid]]
|description=[[File:Glutamic_acid.jpg|left|100px|Glutamic acid]]
'''Glutamic acid''', C<sub>5</sub>H<sub>9</sub>NO<sub>4</sub>, is an amino acid which occurs under physiological conditions mainly as the anion '''glutamate<sup>-</sup>, G''', with ''p''K<sub>a1</sub> = 2.1, ''p''K<sub>a2</sub> = 4.07 and ''p''K<sub>a3</sub> = 9.47. Glutamate&malate is a substrate combination supporting an N-linked pathway control state, when glutamate is transported into the mt-matrix via the [[glutamate-aspartate carrier]] and reacts with [[oxaloacetate]] in the transaminase reaction to form aspartate and [[oxoglutarate]]. Glutamate as the sole substrate is transported by the electroneutral glutamate<sup>-</sup>/OH<sup>-</sup> exchanger, and is oxidized in the mitochondrial matrix by [[glutamate dehydrogenase]] to α-ketoglutarate ([[oxoglutarate | 2-oxoglutarate]]), representing the [[glutamate-anaplerotic pathway control state]]. Ammonia (the byproduct of the reaction) passes freely through the mitochondrial membrane.
'''Glutamic acid''', C<sub>5</sub>H<sub>9</sub>NO<sub>4</sub>, is an amino acid which occurs under physiological conditions mainly as the anion '''glutamate<sup>-</sup>, G''', with ''p''K<sub>a1</sub> = 2.1, ''p''K<sub>a2</sub> = 4.07 and ''p''K<sub>a3</sub> = 9.47. Glutamate&malate is a substrate combination supporting an N-linked pathway control state, when glutamate is transported into the mt-matrix via the [[glutamate-aspartate carrier]] and reacts with [[oxaloacetate]] in the transaminase reaction to form aspartate and [[oxoglutarate]]. Glutamate as the sole substrate is transported by the electroneutral glutamate<sup>-</sup>/OH<sup>-</sup> exchanger, and is oxidized in the mitochondrial matrix by [[glutamate dehydrogenase]] to α-ketoglutarate ([[oxoglutarate | 2-oxoglutarate]]), representing the [[glutamate-anaplerotic pathway control state]]. Ammonia (the byproduct of the reaction) passes freely through the mitochondrial membrane.
|info=[[Gnaiger 2014 MitoPathways]]
|info=[[Gnaiger 2020 BEC MitoPathways]]
}}
}}
[[File:G.jpg|right|240px|link=Glutamate-anaplerotic pathway control state|G]]
[[File:G.jpg|right|240px|link=Glutamate-anaplerotic pathway control state|G]]

Revision as of 18:37, 1 January 2021


high-resolution terminology - matching measurements at high-resolution


Glutamate

Description

Glutamic acid

Glutamic acid, C5H9NO4, is an amino acid which occurs under physiological conditions mainly as the anion glutamate-, G, with pKa1 = 2.1, pKa2 = 4.07 and pKa3 = 9.47. Glutamate&malate is a substrate combination supporting an N-linked pathway control state, when glutamate is transported into the mt-matrix via the glutamate-aspartate carrier and reacts with oxaloacetate in the transaminase reaction to form aspartate and oxoglutarate. Glutamate as the sole substrate is transported by the electroneutral glutamate-/OH- exchanger, and is oxidized in the mitochondrial matrix by glutamate dehydrogenase to α-ketoglutarate ( 2-oxoglutarate), representing the glutamate-anaplerotic pathway control state. Ammonia (the byproduct of the reaction) passes freely through the mitochondrial membrane.

Abbreviation: G

Reference: Gnaiger 2020 BEC MitoPathways

G

Application in HRR

G: Glutamate (L-Glutamic acid, monosodium salt hydrate, C5H8NO4Na; contains 1 mol H2O /mol); Sigma G 1626, 100 g, store at R.T.; FW = 169.1)


Preparation of 2 M stock solution (dissolved in H2O)
  1. Weigh 1.691 g L-Glutamic acid, monosodium salt hydrate, and transfer to a 5 mL volumetric glass flask.
  2. Add 4 mL H2O.
  3. Check pH and adjust to 7.0 if necessary with 5 M KOH (usually the pH is 7 without any adjustment);
  1. Adjust final volume to 5 mL and divide into 0.5 mL portions.
  2. Store at -20 °C.
» O2k manual titrations MiPNet09.12 O2k-Titrations
  • Titration volume (2-mL O2k-chamber): 10 µL using a 25 µL Hamilton syringe.
  • Titration volume (0.5-mL O2k-chamber): 2.5 µL using a 10 µL Hamilton syringe
  • Final concentration: 10 mM.


MitoPedia topics: Substrate and metabolite