Hassan 2020 MitoFit Preprint Arch

From Bioblast
Revision as of 08:19, 8 January 2023 by Gnaiger Erich (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)


MitoFit Preprints         MitoFit Preprints        
Gnaiger 2019 MitoFit Preprints
       
Gnaiger MitoFit Preprints 2020.4
        MitoFit DOI Data Center         MitoPedia: Preprints         Bioenergetics Communications


Hassan 2020 MitoFit Preprint Arch

Publications in the MiPMap
Hassan Hazirah, Gnaiger Erich, Zakaria Fazaine, Makpol Suzana, Abdul Karim Norwahidah (2020) Alterations in mitochondrial respiratory capacity and membrane potential: a link between mitochondrial dysregulation and autism. https://doi.org/10.26124/mitofit:200003

Β» MitoFit Preprint Arch 2020.3

MitoFit pdf

Alterations in mitochondrial respiratory capacity and membrane potential: a link between mitochondrial dysregulation and autism. -

Hassan Hazirah, Gnaiger Erich, Zakaria Fazaine, Makpol Suzana, Abdul Karim Norwahidah (2020) MitoFit Preprint Arch

Abstract: Version 1 (v1) 2020-04-30 doi:10.26124/mitofit:200003

Mitochondrial dysfunction has been implicated in the pathogenesis of autism. We compared mitochondrial respiratory control in autism with normal lymphoblastoid cell line and found that the oxidative phosphorylation and electron transfer of the NADH- and succinate-linked pathways, and cytochrome c oxidase activity of the autism lymphoblastoid cell line were higher. Mitochondrial membrane potential was also higher in the succinate-pathway during LEAK respiration and oxidative phosphorylation. Taken together, these results indicate abnormalities in mitochondrial function with autism. Understanding the link between mitochondrial dysfunction and autism is important for early and effective interventions.

β€’ Keywords: autism spectrum disorders, oxidative phosphorylation, cytochrome c oxidase activity, mitochondrial membrane potential, mitochondrial disease β€’ Bioblast editor: Gnaiger Erich β€’ O2k-Network Lab: MY Kuala Lumpur Abdul Karim N, AT Innsbruck Gnaiger E, AT Innsbruck Oroboros

References

  1. Elsabbagh, M., Divan, G., Koh, Y. J., Kim, Y. S., Kauchali, S., Marcin, C., Montiel-Nava, C., Patel, V., Paula, C. S., Wang, C., Yasamy, M. T. & Fombonne, E. Global prevalence of autism and other pervasive developmental disorders. Autism Res 5, 160-179, doi:10.1002/aur.239 (2012).
  2. WHO, W. H. O. Autism spectrum disorders, https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders> (2018).
  3. Schaefer, G. B. & Mendelsohn, N. J. Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genet Med 10, 4-12, doi:10.1097/GIM.0b013e31815efdd7 (2008).
  4. Rossignol, D. A. & Frye, R. E. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 17, 290-314, doi:10.1038/mp.2010.136 (2012).
  5. Pahrudin Arrozi, A., Wan Ngah, W. Z., Mohd Yusof, Y. A., Ahmad Damanhuri, M. H. & Makpol, S. Antioxidant modulation in restoring mitochondrial function in neurodegeneration. Int J Neurosci 127, 218-235, doi:10.1080/00207454.2016.1178261 (2017).
  6. Islam, M. T. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39, 73-82, oi:10.1080/01616412.2016.1251711 (2017).
  7. Golpich, M., Amini, E., Mohamed, Z., Azman Ali, R., Mohamed Ibrahim, N. & Ahmadiani, A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 23, 5-22, doi:10.1111/cns.12655 (2017).
  8. Makpol, S., Abdul Rahim, N., Hui, C. K. & Ngah, W. Z. Inhibition of mitochondrial cytochrome c release and suppression of caspases by gamma-tocotrienol prevent apoptosis and delay aging in stress-induced premature senescence of skin fibroblasts. Oxid Med Cell Longev 2012, 785743, doi:10.1155/2012/785743 (2012).
  9. Goldani, A. A., Downs, S. R., Widjaja, F., Lawton, B. & Hendren, R. L. Biomarkers in autism. Front Psychiatry 5, 100, doi:10.3389/fpsyt.2014.00100 (2014).
  10. Palmieri, L. & Persico, A. M. Mitochondrial dysfunction in autism spectrum disorders: cause or effect? Biochim Biophys Acta 1797, 1130-1137, doi:10.1016/j.bbabio.2010.04.018 (2010).
  11. Fernandez-Checa, J. C., Kaplowitz, N., Garcia-Ruiz, C., Colell, A., Miranda, M., Mari, M., Ardite, E. & Morales, A. GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcohol-induced defect. Am J Physiol 273, G7-17 (1997).
  12. Gargus, J. J. & Imtiaz, F. Mitochondrial energy-deficient endophenotype in autism. American Journal of Biochemistry and Biotechnology 4, 198-207, doi:10.3844/ajbbsp.2008.198.207 (2008).
  13. Obata, K. Synaptic inhibition and Ξ³-aminobutyric acid in the mammalian central nervous system. Proceedings of the Japan Academy. Series B, Physical and biological sciences 89, 139-156, doi:10.2183/pjab.89.139 (2013).
  14. Anderson, M. P., Hooker, B. S. & Herbert, M. R. Bridging from cells to cognition in autism pathophysiology: Biological pathways to defective brain function and plasticity. American Journal of Biochemistry and Biotechnology 4, 167-176 (2008).
  15. Parikh, S., Goldstein, A., Koenig, M. K., Scaglia, F., Enns, G. M., Saneto, R., Anselm, I., Cohen, B. H., Falk, M. J., Greene, C., Gropman, A. L., Haas, R., Hirano, M., Morgan, P., Sims, K., Tarnopolsky, M., Van Hove, J. L., Wolfe, L. & DiMauro, S. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med 17, 689-701, doi:10.1038/gim.2014.177 (2015).
  16. Ghanizadeh, A., Berk, M., Farrashbandi, H., Alavi Shoushtari, A. & Villagonzalo, K. A. Targeting the mitochondrial electron transport chain in autism, a systematic review and synthesis of a novel therapeutic approach. Mitochondrion 13, 515-519, doi:10.1016/j.mito.2012.10.001 (2013).
  17. Chowdhury, S. R., Djordjevic, J., Albensi, B. C. & Fernyhough, P. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria. Biosci Rep 36, e00286, doi:10.1042/BSR20150244 (2015).
  18. Krumschnabel, G., Eigentler, A., Fasching, M. & Gnaiger, E. Use of safranin for the assessment of mitochondrial membrane potential by high-resolution respirometry and fluorometry. Methods Enzymol 542, 163-181, doi:10.1016/b978-0-12-416618-9.00009-1 (2014).
  19. Doerrier, C., Garcia-Souza, L. F., Krumschnabel, G., Wohlfarter, Y., MΓ©szΓ‘ros, A. T. & Gnaiger, E. High-Resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. Methods Mol Biol 1782, 31-70 (2018).
  20. Gnaiger, E. Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. Oroboros MiPNet Publications, 88 (2014).
  21. Gnaiger, E. Mitochondrial respiratory states and rates. MitoFit Preprint Arch, doi:10.26124/mitofit:190001.v6. (2019).
  22. Lemieux, H., Blier, P. U. & Gnaiger, E. Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers. Sci Rep 7, doi:10.1038/s41598-017-02789-8. (2017).
  23. Perevoshchikova, I. V., Sorochkina, A. I., Zorov, D. B. & Antonenko, Y. N. Safranine O as a fluorescent probe for mitochondrial membrane potential studied on the single particle level and in suspension. Biochemistry. Biokhimiia 74, 663-671 (2009).
  24. Akerman, K. E. & Wikstrom, M. K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68, 191-197 (1976).
  25. Figueira, T. R., Melo, D. R., Vercesi, A. E. & Castilho, R. F. Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Methods Mol Biol 810, 103-117, doi:10.1007/978-1-61779-382-0_7 (2012).
  26. Chauhan, A., Essa, M. M., Muthaiyah, B., Brown, W. T. & Chauhan, V. Mitochondrial abnormalities in lymphoblasts from autism. J Neurochem 109, 273 (2009).
  27. Chauhan, A., Gu, F., Essa, M. M., Wegiel, J., Kaur, K., Brown, W. T. & Chauhan, V. Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem 117, 209-220, doi:10.1111/j.1471-4159.2011.07189.x (2011).
  28. Liu, C. S., Tsai, C. S., Kuo, C. L., Chen, H. W., Lii, C. K., Ma, Y. S. & Wei, Y. H. Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic Res 37, 1307-1317 (2003).
  29. Soon, B. H., Abdul Murad, N. A., Then, S. M., Abu Bakar, A., Fadzil, F., Thanabalan, J., Mohd Haspani, M. S., Toh, C. J., Mohd Tamil, A., Harun, R., Wan Ngah, W. Z. & Jamal, R. Mitochondrial DNA Mutations in Grade II and III Glioma Cell Lines Are Associated with Significant Mitochondrial Dysfunction and Higher Oxidative Stress. Front Physiol 8, 231, doi:10.3389/fphys.2017.00231 (2017).
  30. Giulivi, C., Zhang, Y. F., Omanska-Klusek, A., Ross-Inta, C., Wong, S., Hertz-Picciotto, I., Tassone, F. & Pessah, I. N. Mitochondrial dysfunction in autism. JAMA 304, 2389-2396, doi:10.1001/jama.2010.1706 (2010).
  31. Benzecry, J. M., Deth, R. & Holtzman, D. Abnormalities in respiratory properties of lymphoblasts in autistic spectrum disorders. United Mitochondrial Disease Foundation Abstracts (2008).
  32. Poling, J. S., Frye, R. E., Shoffner, J. & Zimmerman, A. W. Developmental regression and mitochondrial dysfunction in a child with autism. J Child Neurol 21, 170-172 (2006).
  33. Tang, G., Gutierrez Rios, P., Kuo, S. H., Akman, H. O., Rosoklija, G., Tanji, K., Dwork, A., Schon, E. A., Dimauro, S., Goldman, J. & Sulzer, D. Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 54, 349-361, doi:10.1016/j.nbd.2013.01.006 (2013).
  34. Guevara-Campos, J., Gonzalez-Guevara, L., Puig-Alcaraz, C. & Cauli, O. Autism spectrum disorders associated to a deficiency of the enzymes of the mitochondrial respiratory chain. Metab Brain Dis 28, 605-612, doi:10.1007/s11011-013-9419-x (2013).
  35. Palmieri, L., Papaleo, V., Porcelli, V., Scarcia, P., Gaita, L., Sacco, R., Hager, J., Rousseau, F., Curatolo, P., Manzi, B., Militerni, R., Bravaccio, C., Trillo, S., Schneider, C., Melmed, R., Elia, M., Lenti, C., Saccani, M., Pascucci, T., Puglisi-Allegra, S., Reichelt, K. L. & Persico, A. M. Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry 15, 38-52, doi:10.1038/mp.2008.63 (2010).
  36. Frye, R. E. & Naviaux, R. K. Autistic disorder with complex IV overactivity: A new mitochondrial syndrome. Journal of Pediatric Neurology 9, 427–434, doi:10.3233/JPN-2011-0507 (2011).
  37. Holtzman, D. Autistic spectrum disorders and mitochondrial encephalopathies. Acta Paediatr 97, 859-860, doi:10.1111/j.1651-2227.2008.00883.x (2008).
  38. Wojtczak, L., Teplova, V. V., Bogucka, K., Czyz, A., Makowska, A., Wieckowski, M. R., Duszynski, J. & Evtodienko, Y. V. Effect of glucose and deoxyglucose on the redistribution of calcium in ehrlich ascites tumour and Zajdela hepatoma cells and its consequences for mitochondrial energetics. Further arguments for the role of Ca(2+) in the mechanism of the crabtree effect. European journal of biochemistry 263, 495-501 (1999).
  39. Chauhan, A., Essa, M. M., Merz, G., Muthaiyah, B., Ted Brown, W. & Chauhan, V. 81 Mitochondrial abnormalities in lymphoblasts from autism. Mitochondrion 10, 223, doi.org/10.1016/j.mito.2009.12.076 (2010).
  40. James, S. J., Rose, S., Melnyk, S., Jernigan, S., Blossom, S., Pavliv, O. & Gaylor, D. W. Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23, 2374-2383, doi:10.1096/fj.08-128926 (2009).
  41. Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M., Sollott, S. J. & Zorov, D. B. Mitochondrial membrane potential. Analytical biochemistry 552, 50-59, doi:10.1016/j.ab.2017.07.009 (2018).
  42. Suski, J. M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J. & Wieckowski, M. R. Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol 810, 183-205, doi:10.1007/978-1-61779-382-0_12 (2012).
  43. Korshunov, S. S., Skulachev, V. P. & Starkov, A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416, 15-18 (1997).
  44. Skulachev, V. P. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29, 169-202 (1996).
  45. Zorov, D. B., Juhaszova, M. & Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological reviews 94, 909-950, doi:10.1152/physrev.00026.2013 (2014).
  46. Starkov, A. A. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147, 37-52, doi:10.1196/annals.1427.015 (2008).

Preprints for Gentle Science

MitoFit Preprints.png

Β» MitoFit Preprints - the Open Access preprint server for mitochondrial physiology and bioenergetics

Β» MitoPedia: Preprints


Labels: MiParea: Respiration, mt-Medicine  Pathology: Autism  Stress:Mitochondrial disease  Organism: Human 

Preparation: Permeabilized cells  Enzyme: Complex IV;cytochrome c oxidase  Regulation: Coupling efficiency;uncoupling, mt-Membrane potential  Coupling state: LEAK, OXPHOS, ET  Pathway: N, S, CIV, NS, ROX  HRR: Oxygraph-2k, O2k-Fluorometer 

Safranin 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.