Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Hoeks 2012 J Cell Physiol

From Bioblast
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Publications in the MiPMap
Hoeks J, Arany Z, Phielix E, Moonen-Kornips E, Hesselink MK, Schrauwen P (2012) Enhanced lipid -but not carbohydrate- supported mitochondrial respiration in skeletal muscle of PGC-1α overexpressing mice. J Cell Physiol 227:1026-33.

» PMID: 21520076

Hoeks J, Arany Z, Phielix E, Moonen-Kornips E, Hesselink MK, Schrauwen P (2012) J Cell Physiol

Abstract: Skeletal muscle mitochondrial dysfunction has been linked to several disease states as well as the process of aging. A possible factor involved is the peroxisome proliferator-activated receptor (PPAR) γ co-activator 1α (PGC-1α), a major player in the regulation of skeletal muscle mitochondrial metabolism. However, it is currently unknown whether PGC-1α, besides stimulating mitochondrial proliferation, also affects the functional capacity per mitochondrion. Therefore, we here tested whether PGC-1α overexpression, besides increasing mitochondrial content, also leads to intrinsic mitochondrial adaptations. Skeletal muscle mitochondria from 10 male, muscle-specific PGC-1α overexpressing mice (PGC-1αTg) and 8 wild-type (WT) mice were isolated. Equal mitochondrial quantities were then analyzed for their oxidative capacity by high-resolution respirometry, fuelled by a carbohydrate-derived (pyruvate) and a lipid (palmitoyl-CoA plus carnitine) substrate. Additionally, mitochondria were tested for reactive oxygen species (superoxide) production and fatty acid (FA)-induced uncoupling. PGC-1αTg mitochondria were characterized by an improved intrinsic mitochondrial fat oxidative capacity as evidenced by pronounced increase in ADP-stimulated respiration (p < 0.001) and maximal uncoupled respiration (p < 0.001) upon palmitoyl-CoA plus carnitine. Interestingly, intrinsic mitochondrial capacity on a carbohydrate-derived substrate tended to be reduced. Furthermore, the sensitivity to FA-induced uncoupling was diminished in PGC-1αTg mitochondria (p = 0.02) and this was accompanied by a blunted reduction in mitochondrial ROS production upon fatty acids in PGC-1αTg vs. WT mitochondria (p = 0.04). Uncoupling protein 3 (UCP3) levels were markedly reduced in PGC-1αTg mitochondria (p < 0.001). Taken together, in addition to stimulating mitochondrial proliferation in skeletal muscle, we show here that overexpression of PGC-1α leads to intrinsic mitochondrial adaptations that seem restricted to fat metabolism. Keywords: Skeletal muscle, Mitochondria, Fat metabolism, ROS, Mitochondrial uncoupling

O2k-Network Lab: NL Maastricht Schrauwen P


Labels: MiParea: Respiration 

Stress:Oxidative stress;RONS  Organism: Mouse  Tissue;cell: Skeletal muscle  Preparation: Isolated mitochondria 


Coupling state: LEAK, OXPHOS, ET  Pathway: F, N  HRR: Oxygraph-2k