Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "MiPNet27.06 Prague BEC tutorial-Living Communications pmF"

From Bioblast
(24 intermediate revisions by 2 users not shown)
Line 2: Line 2:
{{Publication
{{Publication
|title=[[File:BEC-logo.png|right|120px|link=Gnaiger 2020 BEC MitoPathways]]
|title=[[File:BEC-logo.png|right|120px|link=Gnaiger 2020 BEC MitoPathways]]
'''Prague CZ''', 2022 Sep 22. BEC tutorial-Living Communications: ''pmF'' — pre [[EMC2022 Prague CZ]].
'''Prague CZ''', 2022 Sep 22. BEC tutorial-Living Communications: ''pmF'' — pre [[EMC2022 Prague CZ |EMC2022 Prague]].
|authors=MiPsociety
|authors=MiPsociety
|year=2022-09-22
|year=2022-09-22
Line 10: Line 10:
Preceding the [[EMC2022 Prague CZ |EMC 2022 49th European Muscle Conference]], Prague, Czech Republic.
Preceding the [[EMC2022 Prague CZ |EMC 2022 49th European Muscle Conference]], Prague, Czech Republic.
[[File:Gnaiger 2020 BEC MitoPathways.jpg|left|100px|link=Gnaiger_2020_BEC_MitoPathways|Gnaiger 2020 BEC MitoPathways]]
[[File:Gnaiger 2020 BEC MitoPathways.jpg|left|100px|link=Gnaiger_2020_BEC_MitoPathways|Gnaiger 2020 BEC MitoPathways]]
The [[mitochondrial membrane potential]] is an element of the science of bioenergetics, linked to the control of respiratory flux and related mitochondrial functions. A PubMed search on ‘mitochondrial membrane potential’ yields nearly 40 000 results and 3442 for 2021 (search 2022-07-04), with a linear increase during the past 20 years. [[Gnaiger_2020_BEC_MitoPathways#Chapter_8._Protonmotive_pressure_and_respiratory_control |Chapter 8]] on ‘Protonmotive pressure and respiratory control’ of [[Mitochondrial Pathways]] (Gnaiger 2020) introduces a novel perspective on Peter Mitchell’s protonmotive force, which incorporates the mitochondrial membrane potential. If you find the reading is tough, you are not alone. Join this BEC tutorial-Living Communications for an introduction into the relevant concepts of physical chemistry, which differ from [[Force#Thermodynamic_ignorance |misleading chapters in bioenergetics textbooks]] on potential gradients, Gibbs ''[[energy]]'', protonmotive [[flow]] and [[force]], and finally protonmotive [[pressure]]. This will introduce students (and teachers) to a new understanding of mitochondrial membrane potential and the protonmotive force, connecting the ideal gas equation, osmotic pressure, the [[Boltzmann constant]] and [[gas constant]] with [[Fick 1855 Pogg Ann |Fick’s]] and [[Einstein 1905 Ann Physik 549 |Einstein’s diffusion equation]]. If theory gets tough, join for a [[MiPNet27.05 BEC tutorial-Living Communications pmF |follow-up retreat]].
The [[mitochondrial membrane potential]] is an element of the science of bioenergetics, linked to the control of respiratory flux and related mitochondrial functions. A [https://pubmed.ncbi.nlm.nih.gov/?term=mitochondrial+membrane+potential PubMed search] on ‘mitochondrial membrane potential’ yields 40 000 results and 3452 for 2021 (search 2022-09-20), with a linear increase during the past 20 years. [[Gnaiger_2020_BEC_MitoPathways#Chapter_8._Protonmotive_pressure_and_respiratory_control |Chapter 8]] on ‘Protonmotive pressure and respiratory control’ of [[Mitochondrial Pathways]] (Gnaiger 2020) introduces a novel perspective on Peter Mitchell’s protonmotive force, which incorporates the mitochondrial membrane potential. If you find the reading is tough, you are not alone. Join this BEC tutorial-Living Communications for an introduction into the relevant concepts of physical chemistry, which differ from [[Force#Thermodynamic_ignorance |misleading chapters in bioenergetics textbooks]] on potential gradients, Gibbs ''[[energy]]'', protonmotive [[flow]] and [[force]], and finally protonmotive [[pressure]]. This will introduce students (and teachers) to a new understanding of mitochondrial membrane potential and the protonmotive force, connecting the ideal gas equation, osmotic pressure, the [[Boltzmann constant]] and [[gas constant]] with [[Fick 1855 Pogg Ann |Fick’s]] and [[Einstein 1905 Ann Physik 549 |Einstein’s diffusion equation]]. If theory gets tough, join for a [[MiPNet27.05 BEC tutorial-Living Communications pmF |follow-up retreat]].


|mipnetlab=AT_Innsbruck_Oroboros, CZ Prague Houstek J
|mipnetlab=AT_Innsbruck_Oroboros, CZ Prague Houstek J
}}
}}
[[File:Vector flux and velocity.jpg|right|330px |Vector flux and velocity|link=Gnaiger_2020_BEC_MitoPathways#Chapter_8._Protonmotive_pressure_and_respiratory_control|thumb|Figure 8.9. Vector flux and velocity: stationary state of diffusion in a linear concentration gradient.]]
[[File:Hydrogen ion circuit.jpg|right|330px|thumb|Figure 1.1. Coupling in oxidative phosphorylation is mediated by the protonmotive force ''pmF''.]]
<br>
 
__TOC__
__TOC__
  Last update: 2022-08-14
<br>
 
  Last update: 2022-09-20
<br>


[[Image:MiPsocietyLOGO.JPG|left|100px|link=http://www.mitophysiology.org|MiP''society'']]  
[[Image:MiPsocietyLOGO.JPG|left|100px|link=http://www.mitophysiology.org|MiP''society'']]  
Line 31: Line 36:
:::: 142 20 Prague 4
:::: 142 20 Prague 4
:::: Czech Republic
:::: Czech Republic
[[File:Hydrogen ion circuit.jpg|right|330px|thumb|Figure 1.1. Coupling in oxidative phosphorylation is mediated by the protonmotive force ''pmF''.]]


<gallery mode=default perrow=9 widths="140px" heights="150px">
<gallery mode=default perrow=9 widths="140px" heights="150px">
File:Profile-icon-9.png | '''Zuzana Korandová''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Zuzana Korandova.jpg | '''[[Korandova Zuzana|Zuzana Korandová]]''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Mracek Tomas.jpg |'''[[Mracek Tomas |Tomáš Mráček]]''', RNDr, Head of Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Mracek Tomas.jpg |'''[[Mracek Tomas |Tomáš Mráček]]''', RNDr, Head of Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:PecinaP.JPG |'''[[Pecina Petr]]''', PhD, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:PecinaP.JPG |'''[[Pecina Petr]]''', PhD, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
Line 44: Line 47:
== Program ==
== Program ==


:::: {| class="wikitable"
::::* Blocks of 10 + 5 min comments, questions, discussion
|+ '''Thursday, Sep 22'''
::::* Sections of Chapter 8, [[Gnaiger_2020_BEC_MitoPathways |Blue Book]]
 
{| class="wikitable"
|+ '''Thursday, Sep 22''' — [[Protonmotive force]] ''pmF'' = Δ<sub>m</sub>''F''<sub>H<sup>+</sup></sub> and '''protonmotive pressure Δ<sub>m</sub>''Π''<sub>H<sup>+</sup></sub>'''
|-
! Time !! Section !! Topic !! a !! b !! c !! d
|-
| 10:00-10:15 || 8. || '''Overview: from Mitchell's four modules to four protonmotive theorems''' || diffusive pressure gradient || pressure difference and potential difference || diffusive and electric pressure difference || concave to convex flow/force <br>
|-
| 10:15-10:25 || 8.1. || '''1. [[Vector |Vectorial]] and [[scalar]] quantities''' || [[amount]] and [[charge]] format || diffusion: gradients and [[Discontinuous system |compartments]] || [[Stoichiometric number |stoichiometry]] and [[advancement]] || <br>
|-
| 10:30-10:40 || 8.2. || '''2. Why is [[ergodynamics |thermodynamics]] scary?''' || [[chemical potential]] || metabolic [[force]] || Gibbs energy - [[exergy]] || <br>
|-
| 10:45-10:50 || 8.2. || '''3. [[Gnaiger 2020 MitoFit x |The elementary unit]]''' || [[SI base units]]  || [[Elementary entity |elementary quantities]] || [[count]] on [[motive unit]]s || beyond the [[Gas constant]]: [[Boltzmann constant| Boltzmann]], [[Avogadro constant |Avogadro]], [[Faraday constant |Faraday]] <br>
|-
| 11:00-11:10 || 8.3. || '''4. Protonmotive force and motive units''' || [[Proton |Why Δp?]] || ''pmF'' [[format]]s || conversion between formats || measurement of the ''pmF'' <br>
|-
| 11:15-11:45 || || ''Coffee/tea - Chat''  
|-
|-
! Time !! Section !! Contents
| 11:45-11:55 || 8.4.1. || '''5. Protonmotive pressure ''pmP'' linearity''' || diffusion gradients and [[Einstein 1905 Ann Physik 549 |Einstein's diffusion equation]] || [[Fick 1855 Pogg Ann |Fick's law]] || [[Pressure |pressure-force confusion]] || thermodynamics of irreversible processes <br>
|-
|-
| 10:00-11:30 || Introduction || Protonmotive force ''pmF'' = Δ<sub>m</sub>''F''<sub>H<sup>+</sup></sub> <br>
| 12:00-12:10 || 8.4.2. || '''6. Compartments: diffusion and osmotic pressure''' || concave flux/force relation || free activity || infinite forces without explosion || <br>
# Mitchell's theorems on four integrated coupling modules <br>
# Is the protonmotive force — units [mV] or [kJ/mol] — a force? <br>
# Is the "Gibbs ''energy''" [kJ/mol] a force? <br>
# Why did Peter Mitchell use the symbol Δp?
|-
|-
| 11:30-12:00 || Coffee/tea || Chat
| 12:15-12:25 || 8.4.3. || '''7. [[Hydrogen ion]]s and counterions''' || if the force is in ∆pH || electroneutral exchange of counterions || equilibrium H<sup>+</sup> and counterion distribution || concave flow (pressure)/force relation <br>
|-
|-
| 12:00-13:00 || Extension || Four protonmotive theorems on protonmotive ''pressure'' Δ<sub>m</sub>''Π''<sub>H<sup>+</sup></sub> <br>
| 12:30-12:45 || 8.4.4. || '''8. [[Mitochondrial matrix |Matrix]] volume fraction and flux-pressure linearity''' || anodic volume fraction || closed to open anodic system || from [[Intensive quantity |intensity]] to capacity || non-ohmic [[LEAK respiration |proton leak]] explained by first principles <br>
# Diffusion gradients <br>
|-
# Compartments: diffusion and osmotic pressure <br>
| 12:45-13:00 || || '''General discussion''' ''with a glass of wine - a taste of [[Gentle Science]]''
# Hydrogen ions and counterions <br>
# Matrix volume fraction and flux-pressure linearity
|}
|}


 
::::» [[BEC tutorial-Living Communications: pmF to pmP |'''Programme: BEC tutorial-Living Communications: ''pmF'' to ''pmP''''']]
=== ''pmF'': a unifying theory of biology - from metabolism to physical chemistry ===
::::* Peter Mitchell's concept of the protonmotive force ''pmF'' is one of the grand unifying theories of biology, on par with Charles Darwin's theory of evolution, Gregor Mendel's rules of inheritance and classical genetics, and the structure of DNA resolved by Francis Crick, James Watson, and Rosalind Franklin. The ''pmF'' combines the disciplines of biochemistry (metabolism), cell biology (cellular ultrastructure), physiology (energy transformation), thermodynamics (chemical potential, Gibbs ''energy'' - better: Gibbs force), and physical chemistry (diffusion, electrochemistry).
 
::::* This BEC tutorial links different disciplines and describes different processes (transformations) by the same principles and relations of isomorphic quantities:
::::::# metabolic reactions and translocation (scalar and vectorial)
::::::# diffusion (from Fick's law to Einstein's diffusion equation)
::::::# electrochemical potentials (compartmental differences versus gradients) and motive forces (of physics and thermodynamics - from the Boltzmann constant and gas constant to the electromotive constant)
::::::# osmotic pressure (from the gas law to protonmotive pressure)
 
::::* '''Remember ZEN, ''zeNA''''' — Section 8.2.8 - <big>∞</big>2<big>∞</big>
:::::::: RM Pirsig (1974) <span style="color:#0000FF"> ''Zen and the art of motorcycle maintenance. An inquiry into values.''</span style> William Morrow & Company:418 pp.
:::::::: <span style="color:#0000FF">Thermodynamics</span style> (''motorcycle maintenance'') may be dull and tedious drudgery (<span style="color:#0000FF">without curiosity beyond “[[≡]]”</span style>) or a valuable and exciting art (if you seek for “=” ZEN). Transformation of dumb, dry and frigid equations into eloquent formulae radiating meaning and sparkling knowledge depends on motivation, skill and persistence (''zeNA'').
::::::::» Compare numerical [[equivalence]] (symbol ≡) and physicochemical [[equality]] (symbol =).
 
=== Why? ===
::::* Why are mitochondria small? Why is [[LEAK respiration]] a non-linear (non-Ohmic) function of the [[mitochondrial membrane potential]] difference Δ''Ψ''<sub>p<sup>+</sup></sub>?
::::* Why is the [[mitochondrial membrane potential]] difference Δ''Ψ''<sub>p<sup>+</sup></sub> — the chemical part of the ''pmF'' — not a force of physics? Similarly, the protonmotive force is not a force of physics. Why '[[isomorphic]]' forces?
::::* Why can we start a chemical reaction (in a homogenous [[system]]) or compartmental diffusion (in a [[discontinuous system]]) at an infinitely large [[force]] - without the system exploding?
 
=== Consider some fundamental quantities ===
[[File:Gibbs energy advancement.png|right|330px|link=Gnaiger_2020_BEC_MitoPathways#Chapter_8._Protonmotive_pressure_and_respiratory_control |Gibbs energy and advancement|thumb|Figure 8.5. Gibbs energy as a function of advancement of transformation in a closed isothermal system at constant pressure.]]
::::* Among the key isomorphic quantities are:
::::::# [[advancement]] and [[stoichiometry]] as the determinants of transformation [[flow]]s
::::::# [[motive entity]] - this is what flows
::::::# [[motive unit]]s for [[count]], [[amount]], and [[charge]]
::::::# chemical and electric partial forces of the ''[[pmF]]''
 
::::* Important distinctions:
::::::# [[system]]s: closed, compartmental, open
::::::# transformations: [[vector |vectoral]] (along continuous gradients), vectorial (across discontinuous boundaries between compartments), scalar (within systems, without spatial direction)
::::::# Gibbs [[energy]] ([[exergy]]), [[chemical potential]], and metabolic [[force]] (Gibbs force)
::::::# potential gradients versus potential differences
::::::# [[proton]]s p<sup>+</sup> and [[hydrogen ion]]s H<sup>+</sup>
::::::# (chemiosmotic) [[pressure]] versus (protonmotive) [[force]]
 
{{Keywords: Force and membrane potential}}
 
=== Gibberish ===
::::* Forget all gibberish that you have learned — if not forgotten already — on textbook thermodynamics. If you are surprised by this suggestion, take a look at specific examples from
::::::» [[Advancement#Advancement_versus_amount |a fundamental textbook on physical chemistry]]
::::::» [[Force#Thermodynamic_ignorance |bioenergetics]].


{{Template:Force and pressure}}


== Lecturer and participants ==
== Lecturer and participants ==
Line 125: Line 97:
File:Profile-icon-9.png |3. '''[[Dolezelova Eva |Eva Doleželová]]''', PhD, Institute of Parasitology, Ceske Budejovice, CZ  
File:Profile-icon-9.png |3. '''[[Dolezelova Eva |Eva Doleželová]]''', PhD, Institute of Parasitology, Ceske Budejovice, CZ  
File:Drahota Z O2k-Cake.jpg |4. '''[[Drahota Zdenek |Zdenek Drahota]]''', PhD, Lab of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Drahota Z O2k-Cake.jpg |4. '''[[Drahota Zdenek |Zdenek Drahota]]''', PhD, Lab of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Profile-icon-9.png |5. '''[[Horakova Olga|Olga Horakova]]''', Laboratory of Adipose Tissue Biology, Institute of Physiology, Czech Academy of Sciences, CZ
File:Elias Jan.jpg |5. '''[[Elias Jan|Jan Eliáš]]''', MBBCh, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Profile-icon-9.png |6. '''Jan Eliáš''', MBBCh, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Dr. Moustafa Elkalaf.JPG |6. '''[[Elkalaf Moustafa|Moustafa Elkalaf]]''', MBBCh, PhD, Lab of Physiology, Faculty of Medicine, Charles University, Hradec Kralove, CZ
File:Profile-icon-9.png |7. '''[[Janovska P|Petra Janovska]]''', PhD, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:EndlicherR.jpg |7. '''[[Endlicher Rene |René Endlicher]]''', PhD, Lab of Physiology, Faculty of Medicine, Charles University, Hradec Kralove, CZ  
File:Dr. Moustafa Elkalaf.JPG |8. '''[[Elkalaf Moustafa|Moustafa Elkalaf]]''', MBBCh, PhD, Lab of Physiology, Faculty of Medicine, Charles University, Hradec Kralove, CZ
File:Profile-icon-9.png |8. '''[[Galatik Frantisek|František Galatík]]''', Laboratory of Physiology, Faculty of Science, Charles University, Prague, CZ
File:EndlicherR.jpg |9. '''[[Endlicher Rene |René Endlicher]]''', PhD, Lab of Physiology, Faculty of Medicine, Charles University, Hradec Kralove, CZ  
File:Profile-icon-9.png |9. '''[[Horakova Olga|Olga Horakova]]''', Laboratory of Adipose Tissue Biology, Institute of Physiology, Czech Academy of Sciences, CZ
File:Profile-icon-9.png |10. '''Michal Knězů''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Houstek_J.jpg |10. '''[[Houstek Josef |Josef Houstek]]''', Prof, MD, PhD, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ  
File:Profile-icon-9.png |11. '''Eliška Koňaříková''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Profile-icon-9.png |11. '''[[Janovska P|Petra Janovska]]''', PhD, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Houstek_J.jpg |12. '''[[Houstek Josef |Josef Houstek]]''', Prof, MD, PhD, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ  
File:Profile-icon-9.png |12. '''[[Kasik Petr|Petr Kašík]]''', Faculty of Science, Charles University, Prague, CZ
File:Profile-icon-9.png |13. '''Zuzana Korandová''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Knezu Michal.jpg |13. '''[[Knezu Michal|Michal Knězů]]''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Profile-icon-9.png |14. '''Barbora Kudrnovská''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Profile-icon-9.png |14. '''[[Konarikova Eliska|Eliška Koňaříková]]''', Dr. rer. nat., Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Profile-icon-9.png |15. '''Aleksandra Marković''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Zuzana Korandova.jpg |15. '''[[Korandova Zuzana|Zuzana Korandová]]''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Mracek Tomas.jpg |16. '''[[Mracek Tomas |Tomáš Mráček]]''', RNDr, Head of Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ   
File:Barbora Kudnrovvska.jpg |16. '''[[Kudrnovska Barbora|Barbora Kudrnovská]]''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:PecinaP.JPG |17. '''[[Pecina Petr |Petr Pecina]]''', PhD, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Mracek Tomas.jpg |17. '''[[Mracek Tomas |Tomáš Mráček]]''', RNDr, Head of Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ   
File:PecinovaA.JPG |18. '''[[Pecinova Alena |Alena Pecinova]]''', PhD, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:PecinaP.JPG |18. '''[[Pecina Petr |Petr Pecina]]''', PhD, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Profile-icon-9.png |19. '''Guillermo Puertas Frias''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:PecinovaA.JPG |19. '''[[Pecinova Alena |Alena Pecinova]]''', PhD, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:SobotkaO.JPG|20. '''[[Sobotka Ondrej |Ondrej Sobotka]]''', MUDr, PhD, Faculty of Medicine, Charles University, Hradec Kralove, CZ
File:Guillermo Puertas.jpg |20. '''[[Puertas Frias Guillermo|Guillermo Puertas Frias]]''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:StankovaP.jpg|21. '''[[Stankova Pavla |Pavla Staňková]]''', Mgr, PhD, Lab of Physiology, Faculty of Medicine, Charles University, Hradec Kralove, CZ
File:Maria Jose Saucedo.jpg |21. '''[[Saucedo Rodriges Maria Jose|Maria Jose Saucedo Rodriges]]''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Profile-icon-9.png |22. '''Maria Jose Saucedo Rodriges''', Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:SobotkaO.JPG|22. '''[[Sobotka Ondrej |Ondrej Sobotka]]''', MUDr, PhD, Faculty of Medicine, Charles University, Hradec Kralove, CZ
File:Profile-icon-9.png |23. '''[[Tauchmannova Katerina |Kateřina Tauchmannová]]''', PhD, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:StankovaP.jpg|23. '''[[Stankova Pavla |Pavla Staňková]]''', Mgr, PhD, Lab of Physiology, Faculty of Medicine, Charles University, Hradec Kralove, CZ
File:ZdrazilovaL.JPG|24. '''[[Zdrazilova Lucie |Lucie Zdrazilova]]''', MSc, First Faculty of Medicine,Charles University, Prague, CZ
File:Katerina Tauchmannova.jpg |24. '''[[Tauchmannova Katerina |Kateřina Tauchmannová]]''', PhD, Lab Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Profile-icon-9.png |25. '''[[Zouhar Petr|Petr Zouhar]]''', Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:ZdrazilovaL.JPG|25. '''[[Zdrazilova Lucie |Lucie Zdrazilova]]''', MSc, First Faculty of Medicine,Charles University, Prague, CZ
File:Profile-icon-9.png |26. '''[[Galatik Frantisek|František Galatík]]''', Laboratory of Physiology, Faculty of Science, Charles University, Prague, CZ
File:Profile-icon-9.png |26. '''[[Zouhar Petr|Petr Zouhar]]''', Institute of Physiology, Czech Academy of Sciences, Prague, CZ
File:Profile-icon-9.png |27. '''[[Kasik Petr|Petr Kašík]]''', Faculty of Science, Charles University, Prague, CZ
|-
</gallery>
<gallery mode=default perrow=2 widths="400px" heights="300px">
File:Pressure-force Maxwell.png
File:Pressure-force van't Hoff.png
File:Pressure-force Nernst.png
File:Pressure-force Einstein.png
File:Pressure-force Prigogine.png
File:Pressure-force Mitchell.png
|-
|-
</gallery>
</gallery>


== Registration and general information ==
== Registration and general information ==
::: ''in preparation''
::::* Informal, no registration fee - send Email to: instruments@oroboros.at
::::* Informal, no registration fee - send Email to: instruments@oroboros.at
::::* Limited number of participants
::::* Limited number of participants

Revision as of 00:17, 22 September 2022


Bioenergetics Communications        
Gnaiger 2020 BEC MitoPathways
       
Gnaiger Erich et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1.
        MitoPedia: BEC         MitoPedia: Gentle Science         MitoFit Preprints         DOI Data Center
Publications in the MiPMap
BEC-logo.png

Prague CZ, 2022 Sep 22. BEC tutorial-Living Communications: pmF — pre EMC2022 Prague.


MiPsociety (2022-09-22) Mitochondr Physiol Network

Abstract: BEC tutorial-Living Communications. Mitochondrial membrane potential and Peter Mitchell’s protonmotive force: elements of the science of bioenergetics. Preceding the EMC 2022 49th European Muscle Conference, Prague, Czech Republic.

Gnaiger 2020 BEC MitoPathways

The mitochondrial membrane potential is an element of the science of bioenergetics, linked to the control of respiratory flux and related mitochondrial functions. A PubMed search on ‘mitochondrial membrane potential’ yields 40 000 results and 3452 for 2021 (search 2022-09-20), with a linear increase during the past 20 years. Chapter 8 on ‘Protonmotive pressure and respiratory control’ of Mitochondrial Pathways (Gnaiger 2020) introduces a novel perspective on Peter Mitchell’s protonmotive force, which incorporates the mitochondrial membrane potential. If you find the reading is tough, you are not alone. Join this BEC tutorial-Living Communications for an introduction into the relevant concepts of physical chemistry, which differ from misleading chapters in bioenergetics textbooks on potential gradients, Gibbs energy, protonmotive flow and force, and finally protonmotive pressure. This will introduce students (and teachers) to a new understanding of mitochondrial membrane potential and the protonmotive force, connecting the ideal gas equation, osmotic pressure, the Boltzmann constant and gas constant with Fick’s and Einstein’s diffusion equation. If theory gets tough, join for a follow-up retreat.


O2k-Network Lab: AT_Innsbruck_Oroboros, CZ Prague Houstek J

Figure 1.1. Coupling in oxidative phosphorylation is mediated by the protonmotive force pmF.



Last update: 2022-09-20


MiPsociety
Dr. Zdenek Drahota received from his team in Prague an Oroboros cake at his 80th birthday

This MiPevent is dedicated to Dr. Zdenek Drahota — one of the greatest mitochondrial physiologists of the Czech Republic — at his 90th birthday:

In collaboration with the Mitochondrial Physiology Society - see MiP2017


Venue and local organizers

Laboratory of Bioenergetics
Institute of Physiology CAS
Videnska 1083
142 20 Prague 4
Czech Republic


Program

  • Blocks of 10 + 5 min comments, questions, discussion
  • Sections of Chapter 8, Blue Book
Thursday, Sep 22Protonmotive force pmF = ΔmFH+ and protonmotive pressure ΔmΠH+
Time Section Topic a b c d
10:00-10:15 8. Overview: from Mitchell's four modules to four protonmotive theorems diffusive pressure gradient pressure difference and potential difference diffusive and electric pressure difference concave to convex flow/force
10:15-10:25 8.1. 1. Vectorial and scalar quantities amount and charge format diffusion: gradients and compartments stoichiometry and advancement
10:30-10:40 8.2. 2. Why is thermodynamics scary? chemical potential metabolic force Gibbs energy - exergy
10:45-10:50 8.2. 3. The elementary unit SI base units elementary quantities count on motive units beyond the Gas constant: Boltzmann, Avogadro, Faraday
11:00-11:10 8.3. 4. Protonmotive force and motive units Why Δp? pmF formats conversion between formats measurement of the pmF
11:15-11:45 Coffee/tea - Chat
11:45-11:55 8.4.1. 5. Protonmotive pressure pmP linearity diffusion gradients and Einstein's diffusion equation Fick's law pressure-force confusion thermodynamics of irreversible processes
12:00-12:10 8.4.2. 6. Compartments: diffusion and osmotic pressure concave flux/force relation free activity infinite forces without explosion
12:15-12:25 8.4.3. 7. Hydrogen ions and counterions if the force is in ∆pH electroneutral exchange of counterions equilibrium H+ and counterion distribution concave flow (pressure)/force relation
12:30-12:45 8.4.4. 8. Matrix volume fraction and flux-pressure linearity anodic volume fraction closed to open anodic system from intensity to capacity non-ohmic proton leak explained by first principles
12:45-13:00 General discussion with a glass of wine - a taste of Gentle Science
» Programme: BEC tutorial-Living Communications: pmF to pmP


Lecturer and participants

Participants

Restricted number of participants: countmax = (29 + 1) x

Registration and general information

  • Informal, no registration fee - send Email to: instruments@oroboros.at
  • Limited number of participants
  • Provide your name and affiliation (if you wish for the website)
  • Provide a foto (if you wish for the website)

COVID-19

The event will be held in accordance with current COVID regulations. A primary concern must be the safety of our participants and staff, which is why we reserve the right to cancel the event if there are any concerns/restrictions.


Recommended reading

Hydrogen ion circuit and coupling in OXPHOS
Gnaiger 2020 BEC MitoPathways
  1. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. https://doi.org/10.1016/j.bbabio.2011.09.018
  2. Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. https://doi.org/10.26124/bec:2020-0002 - Chapter 8
  3. Gnaiger E (2021) The elementary unit — canonical reviewer's comments on: Bureau International des Poids et Mesures (2019) The International System of Units (SI) 9th ed. https://doi.org/10.26124/mitofit:200004.v2
MitoPedia



» MitoPedia: Ergodynamics

MitoGlobal
BEC tutorials are listed as MitoGlobal Events.


Labels:






ORO, MiP, 2022, MitoGlobal, Next