Pereira 2017 EMBO J

From Bioblast
Revision as of 10:49, 14 January 2020 by Gnaiger Erich (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Publications in the MiPMap
Pereira RO, Tadinada SM, Zasadny FM, Oliveira KJ, Pires KMP, Olvera A, Jeffers J, Souvenir R, Mcglauflin R, Seei A, Funari T, Sesaki H, Potthoff MJ, Adams CM, Anderson EJ, Abel ED (2017) OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J 36:2126-45.

Β» PMID: 28607005

Pereira RO, Tadinada SM, Zasadny FM, Oliveira KJ, Pires KMP, Olvera A, Jeffers J, Souvenir R, Mcglauflin R, Seei A, Funari T, Sesaki H, Potthoff MJ, Adams CM, Anderson EJ, Abel ED (2017) EMBO J

Abstract: Mitochondrial dynamics is a conserved process by which mitochondria undergo repeated cycles of fusion and fission, leading to exchange of mitochondrial genetic content, ions, metabolites, and proteins. Here, we examine the role of the mitochondrial fusion protein optic atrophy 1 (OPA1) in differentiated skeletal muscle by reducing OPA1 gene expression in an inducible manner. OPA1 deficiency in young mice results in non-lethal progressive mitochondrial dysfunction and loss of muscle mass. Mutant mice are resistant to age- and diet-induced weight gain and insulin resistance, by mechanisms that involve activation of ER stress and secretion of fibroblast growth factor 21 (FGF21) from skeletal muscle, resulting in increased metabolic rates and improved whole-body insulin sensitivity. OPA1-elicited mitochondrial dysfunction activates an integrated stress response that locally induces muscle atrophy, but via secretion of FGF21 acts distally to modulate whole-body metabolism.

Β© 2017 The Authors. β€’ Keywords: ER stress, FGF21, OPA1, Mitochondrial dysfunction, Skeletal muscle β€’ Bioblast editor: Kandolf G β€’ O2k-Network Lab: US IA Iowa City Abel ED, US NC Greenville Anderson EJ


Labels: MiParea: Respiration, nDNA;cell genetics 


Organism: Mouse  Tissue;cell: Skeletal muscle  Preparation: Permeabilized tissue 


Coupling state: OXPHOS  Pathway: N, NS  HRR: Oxygraph-2k 

Labels, 2017-09 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.