Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Pyruvate

From Bioblast
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


high-resolution terminology - matching measurements at high-resolution


Pyruvate

Description

Pyruvic acid

Pyruvic acid, C3H4O3, is an alpha-keto monocarboxylic acid which occurs under physiological conditions mainly as the anion pyruvate-, P, with pKa = 2.5. Pyruvate is formed in glycolysis from phosphoenolpyruvate. In the cytosol, pyruvate is a substrate of lactate dehydrogenase. Pyruvate enters the mitochondrial matrix via a specific low Km' H+/monocarboxylate cotransporter known as the pyruvate carrier. Similarly, the plasma membrane of many cell types has H+/monocarboxylate cotransporter activity and pyruvate can thus be added as a substrate to living cells. In the mt-matrix the oxidative decarboxylation of pyruvate is catalyzed by pyruvate dehydrogenase and yields acetyl-CoA. Pyruvate competitively reverses the inhibition of cytochrome c oxidase by cyanide. Pyruvate is an antioxidant reacting with hydrogen peroxide.

Abbreviation: P

Reference: Gnaiger 2020 BEC MitoPathways, MiPNet09.12 O2k-Titrations

Application in HRR

P: Pyruvate (pyruvic acid, sodium salt; C3H3O3Na), Sigma-Aldrich: P2256, store at 4 °C, CAS: 113-24-6, M = 110.0 g·mol-1
Hazard statements: H317, H319; may cause an allergic skin reaction, causes serious eye irritation
It is possible to weigh the powder beforehand in the Eppendorf-type tubes and store these tubes at 4 °C, to be diluted only on the day of use.
After addition of H2O the pH of the Pyruvate solution is about 6. This is acceptable without pH-adjustment, because the titrated volumes are small and reaction media are buffered.
2021-03: The preparation instructions were updated to take the volume of the solute (P) into account (see: Volume of the solute). The concentrations prepared following the former instructions (see Discussion section) are sufficiently high for SUIT protocol titrations.


Preparation of 2 M stock solution (200 µL, dissolved in H2O) for use in 2-mL O2k-chamber:
  1. Prepare fresh everyday.
  2. Weigh 44 mg of pyruvic acid directly into a 0.5 mL Eppendorf tube.
  3. Add 180 µL H2O.
» O2k manual titrations MiPNet09.12 O2k-Titrations
  • Titration volume (2-mL O2k-chamber): 5 µL using a 25 µL Hamilton syringe.
  • Final concentration: 5 mM.


Preparation of 2.5 M stock solution (200 µL, dissolved in H2O) for use in 0.5-mL O2k-chamber:
  1. Prepare fresh everyday.
  2. Weigh 55 mg of pyruvic acid directly into a 0.5 mL Eppendorf tube.
  3. Add 175 µL H2O.
» O2k manual titrations MiPNet09.12 O2k-Titrations
  • Titration volume (0.5-mL O2k-chamber): 1 µL using a 10 µL Hamilton syringe.
  • Final concentration: 5 mM.

Troubleshooting

Unstable respiration while using pyruvate as the only substrate

Question:
I am evaluating mitochondrial respiration from Drosophila melanogaster using Pyruvate, ADP, and Cytochrome C. However, I do not achieve a steady state level in OXPHOS.
Any advice would be appreciated. The data is attached (2019-07-17).
Ticket2019072631000015.png
  • Answer:
    Pyruvate alone is not sufficient to support NADH-linked respiration. In order to do so you need to combine pyruvate with at least a second NADH-linked substrate (e.g. Malate) or use a more complex combination of substrates (e.g., Pyruvate&Glutamate&Malate). See Fig. 5.9. in Gnaiger 2020 BEC MitoPathways
Additionally, you may consult some of the publications from Drosophila melanogaster mitochondria: O2k-Publications:_Drosophila


MitoPedia topics: Substrate and metabolite