Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Skovbro 2011 J Appl Physiol"

From Bioblast
(Created page with "{{Publication |title=Skovbro M, Boushel R, Hansen CN, Helge JW, Dela F (2011) High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal mu...")
ย 
Line 14: Line 14:
|organism=Human
|organism=Human
|tissues=Skeletal Muscle
|tissues=Skeletal Muscle
|preparations=Intact Cell; Cultured; Primary, Isolated Mitochondria
|enzymes=Complex I, Complex IV; Cytochrome c Oxidase
|enzymes=Complex I, Complex IV; Cytochrome c Oxidase
|topics=Substrate; Glucose; TCA Cycle
|topics=Substrate; Glucose; TCA Cycle
}}
}}

Revision as of 08:02, 30 August 2011

Publications in the MiPMap
Skovbro M, Boushel R, Hansen CN, Helge JW, Dela F (2011) High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle. J. Appl. Physiol. 110(6):1607-1614.

ยป PMID:21415171

Skovbro M, Boushel R, Hansen CN, Helge JW, Dela F (2011) J. Appl. Physiol.

Abstract: Twenty one healthy untrained male subjects were randomized to follow a high-fat diet (HFD; 55-60E% fat, 25-30E% carbohydrate, and 15E% protein) or a normal diet (ND; 25-35E% fat, 55-60E% carbohydrate, and 10-15E% protein) for 2(1/2) wk. Diets were isocaloric and tailored individually to match energy expenditure. At 2(1/2) wk of diet, one 60-min bout of bicycle exercise (70% of maximal oxygen uptake) was performed. Muscle biopsies were obtained before and after the diet, immediately after exercise, and after 3-h recovery. Insulin sensitivity (hyperinsulinemic-euglycemic clamp) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ยฑ 11 and 26 ยฑ 9% exercise-induced increase (P < 0.05) in state 3 (glycolytic substrates) and uncoupled respiration, respectively. However, in HFD this increase was abolished. At recovery, no change from resting respiration was seen in either group. With a lipid substrate (octanoyl-carnitine with or without ADP), similar exercise-induced increases (31-62%) were seen in HFD and ND, but only in HFD was an elevated (P < 0.05) respiratory rate seen at recovery. With HFD complex I and IV protein expression decreased (P < 0.05 and P = 0.06, respectively). A fat-rich diet induces marked changes in the mitochondrial electron transport system protein content and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance. โ€ข Keywords: high-fat diet, complex IV

โ€ข O2k-Network Lab: DK_Copenhagen_Dela F


Labels:

Stress:Mitochondrial Disease; Degenerative Disease and Defect"Mitochondrial Disease; Degenerative Disease and Defect" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Human  Tissue;cell: Skeletal Muscle"Skeletal Muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Intact Cell; Cultured; Primary"Intact Cell; Cultured; Primary" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property., Isolated Mitochondria"Isolated Mitochondria" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Complex I, Complex IV; Cytochrome c Oxidase"Complex IV; Cytochrome c Oxidase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Substrate; Glucose; TCA Cycle"Substrate; Glucose; TCA Cycle" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k