Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Stadlmann 2002 Transplantation"

From Bioblast
(Created page with "*Stadlmann S, Rieger G, Amberger A, Kuznetsov AV, Margreiter R, Gnaiger E (2002) H2O2-mediated oxidative stress versus cold ischemia-reperfusion: mitochondrial respiratory defect...")
ย 
Line 1: Line 1:
*Stadlmann S, Rieger G, Amberger A, Kuznetsov AV, Margreiter R, Gnaiger E (2002) H2O2-mediated oxidative stress versus cold ischemia-reperfusion: mitochondrial respiratory defects in cultured human endothelial cells. Transplantation 74: 1800-1803. - [http://www.ncbi.nlm.nih.gov/pubmed/12499903 PMID: 12499903]
{{Publication
ย 
|title=Stadlmann S, Rieger G, Amberger A, Kuznetsov AV, Margreiter R, Gnaiger E (2002) H2O2-mediated oxidative stress versus cold ischemia-reperfusion: mitochondrial respiratory defects in cultured human endothelial cells. Transplantation 74: 1800-1803.
{{Publications}}
|authors=Stadlmann S, Rieger G, Amberger A, Kuznetsov AV, Margreiter R, Gnaiger E
|year=2002
|journal=Transplantation
|mipnetlab=AT_Innsbruck_GnaigerE
|abstract=Oxidative stress to vascular endothelium plays an important role in cold ischemia-reperfusion (CIR) injury. We compared mitochondrial and plasma membrane
integrity in human endothelial cells after 20-min exposure to 500 ยตM H2O2 or 8-hr cold ischemia and simulated reperfusion. In both groups, plasma membrane integrity was maintained but respiration was significantly decreased, as measured by high-resolution respirometry. Uncoupling was more pronounced
after H2O2 exposure compared with CIR. After
H2O2 exposure, complex I respiration was
significantly reduced, whereas CIR resulted additionally
in a significant inhibition of complex II and IV
respiration. Our results point to a partial overlap of
the patterns of mitochondrial defects after H2O2-mediated
and CIR injury. In this respect, H2O2 exposure
proved to be a useful model to study the mechanisms
of CIR injury to human endothelial cells, whereas the
full pattern of CIR injury could not be induced by a
pulse of hydrogen peroxide exposure.
|info=[http://www.ncbi.nlm.nih.gov/pubmed/12499903 PMID: 12499903]
}}
{{Labeling
|instruments=Oxygraph-2k
|discipline=Mitochondrial Physiology, Biomedicine
|organism=Human
|tissues=Endothelial; Epithelial; Mesothelial Cell
|preparations=Intact Cell; Cultured; Primary, Permeabilized Cell or Tissue; Homogenate
|injuries=Ischemia-Reperfusion; Preservation, RONS; Oxidative Stress
|topics=Respiration; OXPHOS; ETS Capacity, Coupling; Membrane Potential, Substrate; Glucose; TCA Cycle
}}

Revision as of 15:49, 13 September 2010

Publications in the MiPMap
Stadlmann S, Rieger G, Amberger A, Kuznetsov AV, Margreiter R, Gnaiger E (2002) H2O2-mediated oxidative stress versus cold ischemia-reperfusion: mitochondrial respiratory defects in cultured human endothelial cells. Transplantation 74: 1800-1803.

ยป PMID: 12499903

Stadlmann S, Rieger G, Amberger A, Kuznetsov AV, Margreiter R, Gnaiger E (2002) Transplantation

Abstract: Oxidative stress to vascular endothelium plays an important role in cold ischemia-reperfusion (CIR) injury. We compared mitochondrial and plasma membrane integrity in human endothelial cells after 20-min exposure to 500 ยตM H2O2 or 8-hr cold ischemia and simulated reperfusion. In both groups, plasma membrane integrity was maintained but respiration was significantly decreased, as measured by high-resolution respirometry. Uncoupling was more pronounced after H2O2 exposure compared with CIR. After H2O2 exposure, complex I respiration was significantly reduced, whereas CIR resulted additionally in a significant inhibition of complex II and IV respiration. Our results point to a partial overlap of the patterns of mitochondrial defects after H2O2-mediated and CIR injury. In this respect, H2O2 exposure proved to be a useful model to study the mechanisms of CIR injury to human endothelial cells, whereas the full pattern of CIR injury could not be induced by a pulse of hydrogen peroxide exposure.


โ€ข O2k-Network Lab: AT_Innsbruck_GnaigerE


Labels:

Stress:Ischemia-Reperfusion; Preservation"Ischemia-Reperfusion; Preservation" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property., RONS; Oxidative Stress"RONS; Oxidative Stress" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Human  Tissue;cell: Endothelial; Epithelial; Mesothelial Cell"Endothelial; Epithelial; Mesothelial Cell" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Intact Cell; Cultured; Primary"Intact Cell; Cultured; Primary" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property., Permeabilized Cell or Tissue; Homogenate"Permeabilized Cell or Tissue; Homogenate" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property. 

Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Coupling; Membrane Potential"Coupling; Membrane Potential" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Substrate; Glucose; TCA Cycle"Substrate; Glucose; TCA Cycle" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k