Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Talk:Bioblast 2022"

From Bioblast
Line 17: Line 17:
|-
|-
|-
|-
|  || || 10:15  || [[Alencar 2022 MitoFit |A unifying hypothesis for the extraordinary energy metabolism of bloodstream Trypanosoma brucei]] || [[Oliveira Marcus F]]
|  || || 10:15  || [[Chakrabarti L 2022 Abstract Bioblast|"Going south!” An Antarctic expedition to understand more about mitochondrial haemoglobin and ageing.
]] || [[Chakrabarti Lisa]]
 
[[Alencar 2022 MitoFit |A unifying hypothesis for the extraordinary energy metabolism of bloodstream Trypanosoma brucei]] || [[Oliveira Marcus F]]
|-
|-
|-
|-
Line 26: Line 29:
|-
|-
|-
|-
|  || || 11:15  || [[Roach 2022 Abstract Bioblast |Oxidative stress in photosynthesis]] || [[Roach Thomas]]
|  || || 11:15  || [[Donnelly 2022 Abstract Bioblast|The ABC of hypoxia – what is the norm?]] || [[Donnelly Chris]]  
|-
|-
|-
|-
|  || || 11:30 || [[Vera Vives 2022 MitoFit |Application of the NextGen-O2k for building photosynthesis-irradiance curves in microalgae. ]] || [[Morosinotto Tomas]]
|  || || 11:30 || [[Schmitt 2022 Abstract Bioblast|Using oxygen and hydrogen gas in studies of mitochondrial respiration and hydrogen peroxide production under hyperoxic, normoxic, and hypoxic conditions]] || [[Schmitt Sabine]]
|-
|-
|-
|-
|  || || 11:45 || [[Donnelly 2022 Abstract Bioblast|The ABC of hypoxia – what is the norm?]] ||  [[Donnelly Chris]]  
|  || || 11:45 || [[Hand 2022 Abstract Bioblast|Metabolic shutdown of bioenergetics: Protection of macromolecules and survivorship during stress]] ||  [[Hand Steven C]]
|-
|-
|-
|-
|  || || 12:00 || [[Schmitt 2022 Abstract Bioblast|Using oxygen and hydrogen gas in studies of mitochondrial respiration and hydrogen peroxide production under hyperoxic, normoxic, and hypoxic conditions]] || [[Schmitt Sabine]]
|  || || 12:00 || [[Roach 2022 Abstract Bioblast |Oxidative stress in photosynthesis]] || [[Roach Thomas]]
|-
|-
|-
|-
|  || || 12:15 || [[Hand 2022 Abstract Bioblast|Metabolic shutdown of bioenergetics: Protection of macromolecules and survivorship during stress]] || [[Hand Steven C]]  
|  || || 12:15 || [[Vera Vives 2022 MitoFit |Application of the NextGen-O2k for building photosynthesis-irradiance curves in microalgae. ]] || [[Morosinotto Tomas]]
|-
|-
|-
|-
| '''12:30-14:00''' || '''Lunch Break''' ||  ||  ||  
| '''12:30-14:00''' || '''Lunch Break - Orangerie''' ||  ||  ||  
|-
|-
|-
|-
Line 50: Line 53:
|-
|-
|-
|-
|  || || 14:15 || [[Serna 2022 Abstract Bioblast|Measuring mitochondrial Ca2+ efflux in isolated mitochondria and permeabilized cells]] || [[Serna Julian DC]]
|  || || 14:15 || [[Heimler 2022 MitoFit|Platelet bioenergetics are associated with resting metabolic rate and exercise capacity in older women]] || [[Molina Anthony JA]]
|-
|-
|-
|-
|  || || 14:30 || [[Cecatto 2022 Abstract Bioblast|Mitochondrial calcium uptake capacity is lower than calcium retention capacity in the presence and absence of cyclosporin A]] || [[Cecatto Cristiane]]
|  || || 14:30 || [[Granata 2022 Abstract Bioblast |Exercise training-induced enhancement of electron flow to the OXPHOS system is more important than increasing the OXPHOS machinery content to improve ATP generation in human skeletal muscle]] || [[Granata Cesare]]
|-
|-
|-
|-
|  || || 14:45 ||  [[Cardoso 2022 Abstract Bioblast |Redox monitoring and respiration - a new horizon with the NextGen-O2k]] || [[Cardoso Luiza HD]]  
|  || || 14:45 ||   
[[Place 2022 Abstract Bioblast|Ca2+-induced mitochondrial adaptations in response to a single session of sprint interval training]] || [[Place Nicolas]]
|-
|-
|-
|-
Line 68: Line 72:
|-
|-
|-
|-
|  ||  || 16:00 || [[Heimler 2022 MitoFit|Platelet bioenergetics are associated with resting metabolic rate and exercise capacity in older women]] || [[Molina Anthony JA]]
|  ||  || 16:00 || [[Baglivo 2022 MitoFit-QC|Statistical analysis of instrumental reproducibility as internal quality control in high-resolution respirometry]] || [[Baglivo Eleonora]]
|-
|-
|  || || 16:15 || [[Granata 2022 Abstract Bioblast |Exercise training-induced enhancement of electron flow to the OXPHOS system is more important than increasing the OXPHOS machinery content to improve ATP generation in human skeletal muscle]] || [[Granata Cesare]]
|-
|-
|  || || 16:20 || [[Chabi 2022 Abstract Bioblast|Coordination between MAMs, mitochondrial function and protein synthesis in exercised and myopathic muscles]] || [[Chabi Beatrice]]
|-
|-
|  || || 16:25 || [[Lai 2022 Abstract Bioblast|Effect of isolation protocol of skeletal muscle mitochondrial subpopulations on bioenergetic function]] || [[Lai Nicola]]
|-
|-
|-
|-
|  || || 16:30 || [[Garcia-Roves 2022 Abstract Bioblast|Tuning the assessment of coenzyme Q redox state and respiration in skeletal muscle permeabilized fibers]] || [[Garcia-Roves Pablo Miguel]]
|  || || 16:15 || [[Chicco 2022 MitoFit |Resolving the Rotenone Paradox: elucidating the Complexity of multi-substrate respirometry protocols]] || [[Chicco Adam J]]
|-
|-
|-
|-
|  || || 16:45 || [[Goulding 2022 Abstract Bioblast|Mitochondrial function is not impaired in type 1 diabetes but does not respond to 4-weeks endurance training]] || [[Goulding Richie P]]
|  || || 16:30 || [[Cardoso 2022 Abstract Bioblast |Redox monitoring and respiration - a new horizon with the NextGen-O2k]] || [[Cardoso Luiza HD]]  
|-
|-
|-
|-
|  || || 16:50 || [[Place 2022 Abstract Bioblast|Ca2+-induced mitochondrial adaptations in response to a single session of sprint interval training]] || [[Place Nicolas]]
|  || || 16:45 || [[Garcia-Roves 2022 Abstract Bioblast|Tuning the assessment of coenzyme Q redox state and respiration in skeletal muscle permeabilized fibers]] || [[Garcia-Roves Pablo Miguel]]
|-
|-
|-
|-
|}
|}




Line 101: Line 97:
|-
|-
|-
|-
|  ||  || 09:00 || [[Koopman 2022 Abstract Bioblast|The decylTPP mitochondria-targeting moiety lowers electron transport chain supercomplex levels in primary human skin fibroblasts]] ||  [[Koopman_Werner_JH]]
|  ||  || 09:00 || [[Cecatto 2022 Abstract Bioblast|Mitochondrial calcium uptake capacity is lower than calcium retention capacity in the presence and absence of cyclosporin A]] || [[Cecatto Cristiane]]
[[Koopman 2022 Abstract Bioblast|The decylTPP mitochondria-targeting moiety lowers electron transport chain supercomplex levels in primary human skin fibroblasts]] ||  [[Koopman_Werner_JH]]
|-
|-
|-
|-
|  || || 09:15 ||  [[Abed Rabbo 2022 MitoFit|NUBPL: a mitochondrial Complex I deficiency disorder]] || [[Stiban Johnny]]
|  || || 09:15 ||  [[Serna 2022 Abstract Bioblast|Measuring mitochondrial Ca2+ efflux in isolated mitochondria and permeabilized cells]] || [[Serna Julian DC]]
[[Abed Rabbo 2022 MitoFit|NUBPL: a mitochondrial Complex I deficiency disorder]] || [[Stiban Johnny]]
|-
|-
|-
|-
|  || || 09:30 || [[Chicco 2022 MitoFit |Resolving the Rotenone Paradox: elucidating the Complexity of multi-substrate respirometry protocols]] || [[Chicco Adam J]]
|  || || 09:30 || [[Posch 2022 MitoFit|How to optimize respiratory models for SARS-CoV-2 research]] || [[Wilflingseder Doris]]
|-
|-
|-
|-
|  || || 09:45 || [[Torres-Quesada 2022 MitoFit Kinase|Kinase perturbations redirect mitochondrial function]] || [[Torres-Quesada Omar]]
|  || || 09:45 || [[Heichler_2022_MitoFit|Physiometabolic RTCA on an automated platform for short and long term applications]] || [[Wolf Peter]]
[[Torres-Quesada 2022 MitoFit Kinase|Kinase perturbations redirect mitochondrial function]] || [[Torres-Quesada Omar]]
|-
|-
|-
|-
|  || || 09:55 || [[Stefan 2022 Abstract Bioblast|Tracking patient-mutation and lead-molecule driven alterations of kinase activity conformations]] || [[Stefan Eduard]]
|  || || 10:00 || [[Ecker 2022 Abstract Bioblast|Contextual Tissue Cytometry with AI – Functional Single Cell Analyses ''in-situ'']] || [[Ecker Rupert]]
[[Stefan 2022 Abstract Bioblast|Tracking patient-mutation and lead-molecule driven alterations of kinase activity conformations]] || [[Stefan Eduard]]
|-
|-
|-
|-
Line 122: Line 122:
|-
|-
|-
|-
|  || || 10:15 ||  ||
|  '''10:15 - 11:15''' || '''Coffee Break''' || || ||  
|-
|-
|  || || 10:20 ||
|-
|-
|  || || 10:25 ||
|-
|-
|  '''10:30 - 11:15''' || '''Coffee Break''' || || ||  
|-
|-
|-
|-
Line 137: Line 128:
|-
|-
|-
|-
|  || || 11:15 || [[Baglivo 2022 MitoFit-QC|Statistical analysis of instrumental reproducibility as internal quality control in high-resolution respirometry]] || [[Baglivo Eleonora]]
|  || || 11:15 || [[Sobotka 2022 Abstract Bioblast| The Crabtree effect and clinical nutrition]] || [[Sobotka Lubos]]
|-
|-
|-
|-
|  || || 11:30 || [[Heichler_2022_MitoFit|Physiometabolic RTCA on an automated platform for short and long term applications]] || [[Wolf Peter]]
|  || || 11:30 || [[Moreno-Sanchez 2022 Abstract Bioblast| Estimation of energy pathway fluxes in cancer cells- beyond the Warburg effect]] || [[Moreno-Sanchez Rafael]]
|-
|-
|-
|-
|  || || 11:45 || [[Posch 2022 MitoFit|How to optimize respiratory models for SARS-CoV-2 research]] || [[Wilflingseder Doris]]
|  || || 11:45 || [[Porter 2022 Abstract Bioblast|A comparison of bioenergetics in human tongue pre-cancerous dysplastic oral keratinocytes and squamous cancer cells ]] || [[Porter Richard K]]
|-
|-
|-
|-
|  ||  || 12:00 || [[Ecker 2022 Abstract Bioblast|Contextual Tissue Cytometry with AI – Functional Single Cell Analyses ''in-situ'']] || [[Ecker Rupert]]
|  ||  || 12:00 || [[Neuzil 2022 Abstract Bioblast|Metabolic switch utilizing ammonia supports proliferation in regenerating liver]] || [[Neuzil Jiri]]
|-
|-
|-
|-
|  ||  || 12:15 || [[Sumbalova 2022 Abstract Bioblast|Ubiquinol supplementation accelerates the recovery of mitochondrial health of patients with post COVID-19 syndrome on mountain spa rehabilitation]]|| [[Sumbalova Zuzana]]
|  ||  || 12:15 || [[Lai 2022 Abstract Bioblast|Effect of isolation protocol of skeletal muscle mitochondrial subpopulations on bioenergetic function]] || [[Lai Nicola]]
[[Sumbalova 2022 Abstract Bioblast|Ubiquinol supplementation accelerates the recovery of mitochondrial health of patients with post COVID-19 syndrome on mountain spa rehabilitation]]|| [[Sumbalova Zuzana]]
|-
|-
|-
|-
|  ||  || 12:20 || [[Irving 2022 Abstract Bioblast| Impact of nitric oxide promotors on mitochondrial bioenergetics in a murine model of Alzheimer's Disease]] || [[Irving Brian A]]  
|  ||  || 12:20 || [[Lerink 2022 Abstract Bioblast|Renal respiratory conductance: a complex matter]] || [[Lerink Lente JS]]
 
|-
|-
|-
|-
|  ||  || 12:25 ||  [[Karabatsiakis 2022 Abstract Bioblast| Effects of eye-movement desensitization and reprocessing (EMDR) therapy on mitochondrial bioenergetics in immune cells from patients with post-traumatic stress disorder (PTSD): a pilot study.]] || [[Karabatsiakis Alexander]]  
|  ||  || 12:25 ||  [[Meszaros 2022 Abstract Bioblast|Pre-transplant mitochondrial respiration as a clinical prognostic marker during static cold storage and machine perfusion of the liver]] || [[Meszaros Andras]]
[[Karabatsiakis 2022 Abstract Bioblast| Effects of eye-movement desensitization and reprocessing (EMDR) therapy on mitochondrial bioenergetics in immune cells from patients with post-traumatic stress disorder (PTSD): a pilot study.]] || [[Karabatsiakis Alexander]]  
|-
|-
|-
|-
| '''12:30 - 14:00''' || '''Lunch Break''' ||  ||  ||  
| '''12:30 - 14:00''' || '''Lunch Break - Orangerie''' ||  ||  ||  
|-
|-
|-
|-
Line 164: Line 158:
|-
|-
|-
|-
|  ||  || 14:00 ||  [[Dambrova 2022 Abstract Bioblast|Mitochondrial metabolites acylcarnitines: therapeutic potential and drug targets]]|| [[Dambrova Maija]]
|  ||  || 14:00 || [[Eggelbusch 2022 Abstract Bioblast|Nutrient overload and insulin resistance precede reductions in mitochondrial respiration in skeletal muscle after bed rest]] || [[Eggelbusch Moritz]]
  [[Dambrova 2022 Abstract Bioblast|Mitochondrial metabolites acylcarnitines: therapeutic potential and drug targets]]|| [[Dambrova Maija]]
|-
|-
|-
|-
|  || || 14:15 || [Aasander Frostner 2022 MitoFit|Towards a treatment for mitochondrial disease: Current compounds in clinical development] || [[Aasander Frostner Eleonor]]
|  || || 14:05 || [[Goulding 2022 Abstract Bioblast|Mitochondrial function is not impaired in type 1 diabetes but does not respond to 4-weeks endurance training]] || [[Goulding Richie P]]
[[Aasander Frostner 2022 MitoFit|Towards a treatment for mitochondrial disease: Current compounds in clinical development] || [[Aasander Frostner Eleonor]]
|-
|-
|-
|-
|  || || 14:30 || [[Neuzil 2022 Abstract Bioblast|Metabolic switch utilizing ammonia supports proliferation in regenerating liver]] || [[Neuzil Jiri]]
|  || || 14:10 || [[Chabi 2022 Abstract Bioblast|Coordination between MAMs, mitochondrial function and protein synthesis in exercised and myopathic muscles]] || [[Chabi Beatrice]]
|-
|-
|-
|-
|  || || 14:45 || [[Meszaros 2022 Abstract Bioblast|Pre-transplant mitochondrial respiration as a clinical prognostic marker during static cold storage and machine perfusion of the liver]] || [[Meszaros Andras]]
|  || || 14:15 || [[Irving 2022 Abstract Bioblast| Impact of nitric oxide promotors on mitochondrial bioenergetics in a murine model of Alzheimer's Disease]] || [[Irving Brian A]]  
|-
|-
|-
|-
|  || || 14:50 || [[Lerink 2022 Abstract Bioblast|Renal respiratory conductance: a complex matter]] || [[Lerink Lente JS]]
|  || || 14:20 ||  
|-
|-
|-
|-
Line 191: Line 187:
|-
|-
|-
|-
|  ||  || 16:00 || [[Sobotka 2022 Abstract Bioblast| The Crabtree effect and clinical nutrition]] || [[Sobotka Lubos]]
|  ||  || 16:00 ||  
|-
|-
|-
|-
|  || || 16:15  || [[Moreno-Sanchez 2022 Abstract Bioblast| Estimation of energy pathway fluxes in cancer cells- beyond the Warburg effect]] || [[Moreno-Sanchez Rafael]]
|  || || 16:15  ||  
|-
|-
|-
|-
|  || || 16:30 || [[Porter 2022 Abstract Bioblast|A comparison of bioenergetics in human tongue pre-cancerous dysplastic oral keratinocytes and squamous cancer cells ]] || [[Porter Richard K]]
|  || || 16:30 ||  
|-
|-
|-
|-
|  || || 16:45 || [[Eggelbusch 2022 Abstract Bioblast|Nutrient overload and insulin resistance precede reductions in mitochondrial respiration in skeletal muscle after bed rest]] || [[Eggelbusch Moritz]]
|  || || 16:45 ||  
|-
|-
|-
|-

Revision as of 12:00, 15 June 2022

Program

2022-06-29 Day 1 of scientific presentations

Time (CET) Topic Time per lecture Title Speaker
09:15-10:30 Session I
09:15 Opening speech Bioblasts - the taxonomic unit of bioenergetics: mitochondria, chloroplasts, aerobic bacteria Gnaiger Erich
09:35 Art introduction by Odra Noel Ana Hidalgo
09:45 Opening lecture: The alpha and omega of metabolism: why the Krebs cycle brings the earth to life and our own lives to an end Lane Nick
10:15 "Going south!” An Antarctic expedition to understand more about mitochondrial haemoglobin and ageing. || Chakrabarti Lisa

A unifying hypothesis for the extraordinary energy metabolism of bloodstream Trypanosoma brucei || Oliveira Marcus F

10:30-11:15 Coffee Break
11:15-12:30 Session II
11:15 The ABC of hypoxia – what is the norm? Donnelly Chris
11:30 Using oxygen and hydrogen gas in studies of mitochondrial respiration and hydrogen peroxide production under hyperoxic, normoxic, and hypoxic conditions Schmitt Sabine
11:45 Metabolic shutdown of bioenergetics: Protection of macromolecules and survivorship during stress Hand Steven C
12:00 Oxidative stress in photosynthesis Roach Thomas
12:15 Application of the NextGen-O2k for building photosynthesis-irradiance curves in microalgae. Morosinotto Tomas
12:30-14:00 Lunch Break - Orangerie
14:00-15:00 Session III
14:00 The protonmotive force - not merely membrane potential Komlodi Timea
14:15 Platelet bioenergetics are associated with resting metabolic rate and exercise capacity in older women Molina Anthony JA
14:30 Exercise training-induced enhancement of electron flow to the OXPHOS system is more important than increasing the OXPHOS machinery content to improve ATP generation in human skeletal muscle Granata Cesare
14:45

Ca2+-induced mitochondrial adaptations in response to a single session of sprint interval training || Place Nicolas

15:00 - 15:30 Poster session
15:30 - 16:00 Coffee Break
16:00-17:00 Session IV
16:00 Statistical analysis of instrumental reproducibility as internal quality control in high-resolution respirometry Baglivo Eleonora
16:15 Resolving the Rotenone Paradox: elucidating the Complexity of multi-substrate respirometry protocols Chicco Adam J
16:30 Redox monitoring and respiration - a new horizon with the NextGen-O2k Cardoso Luiza HD
16:45 Tuning the assessment of coenzyme Q redox state and respiration in skeletal muscle permeabilized fibers Garcia-Roves Pablo Miguel



2022-06-30 Day 2 of scientific presentations

Time (CET) Topic Time per lecture Title Speaker
09:00 - 10:30 Session V
09:00 Mitochondrial calcium uptake capacity is lower than calcium retention capacity in the presence and absence of cyclosporin A Cecatto Cristiane

The decylTPP mitochondria-targeting moiety lowers electron transport chain supercomplex levels in primary human skin fibroblasts || Koopman_Werner_JH

09:15 Measuring mitochondrial Ca2+ efflux in isolated mitochondria and permeabilized cells Serna Julian DC

NUBPL: a mitochondrial Complex I deficiency disorder || Stiban Johnny

09:30 How to optimize respiratory models for SARS-CoV-2 research Wilflingseder Doris
09:45 Physiometabolic RTCA on an automated platform for short and long term applications Wolf Peter

Kinase perturbations redirect mitochondrial function || Torres-Quesada Omar

10:00 Contextual Tissue Cytometry with AI – Functional Single Cell Analyses in-situ Ecker Rupert

Tracking patient-mutation and lead-molecule driven alterations of kinase activity conformations || Stefan Eduard

10:05 Hacd1 and Hacd2 genes control mitochondrial energetic efficiency through the modulation of mitochondrial membranes phospholipid composition Pilot-Storck F
10:10 Modulation of mitochondrial respiration in ALS cells by hexokinase-based peptides: a novel therapeutic approach to fight neurodegeneration Magri Andrea
10:15 - 11:15 Coffee Break
11:15 - 12:30 Session VI
11:15 The Crabtree effect and clinical nutrition Sobotka Lubos
11:30 Estimation of energy pathway fluxes in cancer cells- beyond the Warburg effect Moreno-Sanchez Rafael
11:45 A comparison of bioenergetics in human tongue pre-cancerous dysplastic oral keratinocytes and squamous cancer cells Porter Richard K
12:00 Metabolic switch utilizing ammonia supports proliferation in regenerating liver Neuzil Jiri
12:15 Effect of isolation protocol of skeletal muscle mitochondrial subpopulations on bioenergetic function Lai Nicola

Ubiquinol supplementation accelerates the recovery of mitochondrial health of patients with post COVID-19 syndrome on mountain spa rehabilitation|| Sumbalova Zuzana

12:20 Renal respiratory conductance: a complex matter Lerink Lente JS
12:25 Pre-transplant mitochondrial respiration as a clinical prognostic marker during static cold storage and machine perfusion of the liver Meszaros Andras

Effects of eye-movement desensitization and reprocessing (EMDR) therapy on mitochondrial bioenergetics in immune cells from patients with post-traumatic stress disorder (PTSD): a pilot study. || Karabatsiakis Alexander

12:30 - 14:00 Lunch Break - Orangerie
14:00-15:00 Session VII
14:00 Nutrient overload and insulin resistance precede reductions in mitochondrial respiration in skeletal muscle after bed rest Eggelbusch Moritz
Mitochondrial metabolites acylcarnitines: therapeutic potential and drug targets|| Dambrova Maija
14:05 Mitochondrial function is not impaired in type 1 diabetes but does not respond to 4-weeks endurance training Goulding Richie P

[[Aasander Frostner 2022 MitoFit|Towards a treatment for mitochondrial disease: Current compounds in clinical development] || Aasander Frostner Eleonor

14:10 Coordination between MAMs, mitochondrial function and protein synthesis in exercised and myopathic muscles Chabi Beatrice
14:15 Impact of nitric oxide promotors on mitochondrial bioenergetics in a murine model of Alzheimer's Disease Irving Brian A
14:20
14:55 Segmental regulation of intestinal mitochondrial function Axelrod Christopher L
15:00 - 15:30 Poster session
15:30 - 16:00 Coffee Break
16:00-17:00 Session 8
16:00
16:15
16:30
16:45
16:50 Nano-encapsulated Dichloroacetophenone (DAP) essential mitochondrial enzyme, is a potential inhibitor of prostate cancer cell growth Batra Jyotsna
17:00 - 17:30 Discussion: The future of BEC