Traufeller 2004 Biochim Biophys Acta

From Bioblast
Revision as of 15:12, 4 October 2010 by Biljana (talk | contribs) (Created page with "{{Publication |title=Traufeller K, Gellerich FN, Zierz S (2004) Different sensitivities of CPT I and CPT II for inhibition by L-aminocarnitine in human skeletal muscle. Biochim. ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Publications in the MiPMap
Traufeller K, Gellerich FN, Zierz S (2004) Different sensitivities of CPT I and CPT II for inhibition by L-aminocarnitine in human skeletal muscle. Biochim. Biophys. Acta 1608: 149-154.

» PMID: 14871492

Traufeller K, Gellerich FN, Zierz S (2004)

Abstract: L-Aminocarnitine (L-AC) has been shown to inhibit carnitine palmitoyltransferases (CPT) in rat muscle and in rat liver. However, there are no reports on interactions of L-AC with CPT II and CPT I of human muscle. Therefore, the aim of the present work was to characterize the inhibition of human muscle CPT I and CPT II by L-AC in muscle mitochondria, skinned fibers and muscle homogenates in comparison to the established action of malonyl-CoA. Both isoenzymes were inhibited by L-AC, but sensitivity was different (CPT I, Kd=3.8 mM L-AC; CPT II, Kd=21.3 μM L-AC). A mixed inhibition type in respect to carnitine was detected (Ki=3.5 μM L-AC). At 0.5 mM L-AC, CPT II was completely inhibited without affection of CPT I. In contrast, CPT I was completely inhibited by 0.4 mM malonyl-CoA (Kd=0.5 μM), whereas CPT II was nearly not affected by this inhibitor. Using these inhibitors in muscle homogenates, activities of CPT II and CPT I were detected to be 38±10% and 63±10% of total, respectively (n=21). In intact mitochondria and different fractions of muscle homogenates after selective solubilization of CPT II by Tween 20, the extent of specific CPT inhibition changed in relation to the accessible isoenzyme pattern. Palmitoyl-carnitine-dependent respiration in skinned fibers was inhibited by high concentrations of L-AC, indicating that the inhibitor can be transported via the acyl-carnitine transporter, too. The combined use of both inhibitors (L-AC and malonyl-CoA) allows the kinetic characterization of CPT I and CPT II in human muscle homogenates. In addition, it has been shown that L-AC can be used for the study of metabolic consequences of CPT II deficiency on function of intact mitochondria. Keywords: CPT, Human muscle mitochondria, Image -aminocarnitine, Inhibition

O2k-Network Lab: DE_Magdeburg_GellerichFN


Labels:


Organism: Human, Rat  Tissue;cell: Skeletal Muscle"Skeletal Muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property., Hepatocyte; Liver"Hepatocyte; Liver" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Permeabilized Cell or Tissue; Homogenate"Permeabilized Cell or Tissue; Homogenate" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property. 

Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k