Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Gnaiger 2018 MiPschool Tromso A1"

From Bioblast
Line 6: Line 6:
|event=MiPschool Tromso-Bergen 2018
|event=MiPschool Tromso-Bergen 2018
|abstract=[[Image:MITOEAGLE-logo.jpg|left|100px|link=http://www.mitoglobal.org/index.php/MITOEAGLE|COST Action MitoEAGLE]]
|abstract=[[Image:MITOEAGLE-logo.jpg|left|100px|link=http://www.mitoglobal.org/index.php/MITOEAGLE|COST Action MitoEAGLE]]
The MitoEAGLE project aims at establishing a quantitative database on mitochondrial (mt) respiratory physiology. In this context the necessity for harmonizing the terminology has become increasingly apparent. Substrate-uncoupler-inhibitor titrations (SUIT) are applied to experimentally control [[electron transfer pathways]] in mitochondrial preparations. Complementary to pathway control states (PCS), coupling control states (CCS: ET, OXPHOS, LEAK) are defined in mt-preparations, and the corresponding respiratory rates are of diagnostic significance [1]. Strategically designed SUIT protocols reveal a diversity of mt-respiratory control patterns and pathway additivity depending on species, organs, cell types, and pathophysiological states, as a hallmark of the transition from bioenergetics to mitochondrial physiology [2]. A rationale for categorizing PCS helps in selecting SUIT protocols according to the specific research question or diagnostic aim, and is essential for interpreting experimental results [3].
The MitoEAGLE project aims at establishing a quantitative database on mitochondrial (mt) respiratory physiology. In this context the necessity for harmonizing the terminology has become increasingly apparent. Substrate-uncoupler-inhibitor titrations (SUIT) are applied to experimentally control electron transfer pathways in mitochondrial preparations. Complementary to pathway control states (PCS), coupling control states (CCS: ET, OXPHOS, LEAK) are defined in mt-preparations, and the corresponding respiratory rates are of diagnostic significance [1]. Strategically designed SUIT protocols reveal a diversity of mt-respiratory control patterns and pathway additivity depending on species, organs, cell types, and pathophysiological states, as a hallmark of the transition from bioenergetics to mitochondrial physiology [2]. A rationale for categorizing PCS helps in selecting SUIT protocols according to the specific research question or diagnostic aim, and is essential for interpreting experimental results [3].


Figure 1 summarizes selected PCS, categorized according to fuel substrate types and the complexity of mitochondrial pathway types at different electron transfer- (ET-) pathway levels. ET-pathway levels are linked to ET-substrate types. The single enzyme step of Complex IV is at level 1. ET-pathway level 2 is stimulated by duroquinol (DQ) feeding electrons into Complex III (CIII) with further electron transfer to CIV and O<sub>2</sub>. ET-pathway level 3 feeds electrons from succinate to CII, and glycerophosphate (Gp) to GpDH directly upstream of the Q-junction. Electron transfer from type 4 substrates (N) feeds electrons into the N-junction from dehydrogenases and enzyme systems directly upstream of NADH and CI. The requirement of a combined operation of the F-junction and N-junction puts type F substrates to level 5 of pathway integration. F-junction substrates are fatty acids involved in β-oxidation, generating (enzyme-bound) FADH<sub>2</sub>, the substrate of electron transferring flavoprotein (CETF). In contrast, FADH<sub>2</sub> is the product of CII. A N-linked co-substrate (typically malate [5]) is required, and FAO can be inhibited completely by inhibition of Complex I (CI). Under physiological conditions, combinations of the fuel substrate types extend the complexity of PCS, exerting additive or competitive effects on respiratory capacity [2-4]. Analysis of combined NS- versus single N- and S-pathway capacities yields information on pathway interactions and channeling through supercomplex assemblies [4], and leads to a re-evaluation of apparent excess capacities of CIV [6].  
Figure 1 summarizes selected PCS, categorized according to fuel substrate types and the complexity of mitochondrial pathway types at different electron transfer- (ET-) pathway levels. ET-pathway levels are linked to ET-substrate types. The single enzyme step of Complex IV is at level 1. ET-pathway level 2 is stimulated by duroquinol (DQ) feeding electrons into Complex III (CIII) with further electron transfer to CIV and O<sub>2</sub>. ET-pathway level 3 feeds electrons from succinate to CII, and glycerophosphate (Gp) to GpDH directly upstream of the Q-junction. Electron transfer from type 4 substrates (N) feeds electrons into the N-junction from dehydrogenases and enzyme systems directly upstream of NADH and CI. The requirement of a combined operation of the F-junction and N-junction puts type F substrates to level 5 of pathway integration. F-junction substrates are fatty acids involved in β-oxidation, generating (enzyme-bound) FADH<sub>2</sub>, the substrate of electron transferring flavoprotein (CETF). In contrast, FADH<sub>2</sub> is the product of CII. A N-linked co-substrate (typically malate [5]) is required, and FAO can be inhibited completely by inhibition of Complex I (CI). Under physiological conditions, combinations of the fuel substrate types extend the complexity of PCS, exerting additive or competitive effects on respiratory capacity [2-4]. Analysis of combined NS- versus single N- and S-pathway capacities yields information on pathway interactions and channeling through supercomplex assemblies [4], and leads to a re-evaluation of apparent excess capacities of CIV [6].  


Biochemical '''cell ergometry''' aims at measurement of ''J''<sub>O2,max</sub> (compare ''V''<sub>O2,max</sub> in exercise ergometry of humans and animals) of cell respiration linked to phosphorylation of ADP to ATP. The corresponding [[OXPHOS-capacity]] is based on saturating concentrations of ADP, [ADP]*, and inorganic phosphate, [P<sub>i</sub>]*, available to the mitochondria. This is metabolically opposite to experimental uncoupling of respiration, which yields noncoupled [[ET-capacity]]. Contrasting the concept-driven terminology on CCS (LEAK, OXPHOS, ET) from the historical terminology in bioenergetics (States 1 to 5) provides important insights into the aims and rigorous quality control of diagnostic mitochondrial physiology [1].  
Biochemical ''cell ergometry'' aims at measurement of ''J''<sub>O2,max</sub> (compare ''V''<sub>O2,max</sub> in exercise ergometry of humans and animals) of cell respiration linked to phosphorylation of ADP to ATP. The corresponding [[OXPHOS-capacity]] is based on saturating concentrations of ADP, [ADP]*, and inorganic phosphate, [P<sub>i</sub>]*, available to the mitochondria. This is metabolically opposite to experimental uncoupling of respiration, which yields noncoupled [[ET-capacity]]. Contrasting the concept-driven terminology on CCS (LEAK, OXPHOS, ET) from the historical terminology in bioenergetics (States 1 to 5) provides important insights into the aims and rigorous quality control of diagnostic mitochondrial physiology [1].  


We cordially invite scientists and students to support our effort to prepare joint publications for implementing a consistent terminology on respiratory states, to ‘facilitate effective transdisciplinary communication, education, and ultimately further discovery’ and advance the quality and impact of mitochondrial physiology [1].
We cordially invite scientists and students to support our effort to prepare joint publications for implementing a consistent terminology on respiratory states, to ‘facilitate effective transdisciplinary communication, education, and ultimately further discovery’ and advance the quality and impact of mitochondrial physiology [1].
|editor=[[Gnaiger E]],
|editor=[[Gnaiger E]],
}}
{{Labeling
|couplingstates=LEAK, ET
}}
}}
== Affiliations and support ==
== Affiliations and support ==
Line 22: Line 19:
:::# Oroboros Instruments, Innsbruck, Austria
:::# Oroboros Instruments, Innsbruck, Austria


:::: Supported by K-Regio project MitoFit. Contribution to COST Action CA15203 MitoEAGLE.
:::: Contribution to [[MitoEAGLE |COST Action CA15203 MitoEAGLE]], supported by COST (European Cooperation in Science and Technology), and K-Regio project [[K-Regio_MitoFit|MitoFit]].  




Line 40: Line 37:
{{Labeling
{{Labeling
|area=Respiration, mt-Awareness
|area=Respiration, mt-Awareness
|couplingstates=OXPHOS
|couplingstates=LEAK, OXPHOS, ET
|pathways=F, N, S, Gp, DQ, CIV, NS, Other combinations
|pathways=F, N, S, Gp, DQ, CIV, NS, Other combinations
|event=Oral
|event=Oral
}}
}}

Revision as of 16:10, 12 October 2018

Erich Gnaiger
Mitochondrial states and rates: 1. Electron transfer pathways and respiratory control. 2. Coupling control.

Link: MitoEAGLE

Gnaiger E (2018)

Event: MiPschool Tromso-Bergen 2018

COST Action MitoEAGLE

The MitoEAGLE project aims at establishing a quantitative database on mitochondrial (mt) respiratory physiology. In this context the necessity for harmonizing the terminology has become increasingly apparent. Substrate-uncoupler-inhibitor titrations (SUIT) are applied to experimentally control electron transfer pathways in mitochondrial preparations. Complementary to pathway control states (PCS), coupling control states (CCS: ET, OXPHOS, LEAK) are defined in mt-preparations, and the corresponding respiratory rates are of diagnostic significance [1]. Strategically designed SUIT protocols reveal a diversity of mt-respiratory control patterns and pathway additivity depending on species, organs, cell types, and pathophysiological states, as a hallmark of the transition from bioenergetics to mitochondrial physiology [2]. A rationale for categorizing PCS helps in selecting SUIT protocols according to the specific research question or diagnostic aim, and is essential for interpreting experimental results [3].

Figure 1 summarizes selected PCS, categorized according to fuel substrate types and the complexity of mitochondrial pathway types at different electron transfer- (ET-) pathway levels. ET-pathway levels are linked to ET-substrate types. The single enzyme step of Complex IV is at level 1. ET-pathway level 2 is stimulated by duroquinol (DQ) feeding electrons into Complex III (CIII) with further electron transfer to CIV and O2. ET-pathway level 3 feeds electrons from succinate to CII, and glycerophosphate (Gp) to GpDH directly upstream of the Q-junction. Electron transfer from type 4 substrates (N) feeds electrons into the N-junction from dehydrogenases and enzyme systems directly upstream of NADH and CI. The requirement of a combined operation of the F-junction and N-junction puts type F substrates to level 5 of pathway integration. F-junction substrates are fatty acids involved in β-oxidation, generating (enzyme-bound) FADH2, the substrate of electron transferring flavoprotein (CETF). In contrast, FADH2 is the product of CII. A N-linked co-substrate (typically malate [5]) is required, and FAO can be inhibited completely by inhibition of Complex I (CI). Under physiological conditions, combinations of the fuel substrate types extend the complexity of PCS, exerting additive or competitive effects on respiratory capacity [2-4]. Analysis of combined NS- versus single N- and S-pathway capacities yields information on pathway interactions and channeling through supercomplex assemblies [4], and leads to a re-evaluation of apparent excess capacities of CIV [6].

Biochemical cell ergometry aims at measurement of JO2,max (compare VO2,max in exercise ergometry of humans and animals) of cell respiration linked to phosphorylation of ADP to ATP. The corresponding OXPHOS-capacity is based on saturating concentrations of ADP, [ADP]*, and inorganic phosphate, [Pi]*, available to the mitochondria. This is metabolically opposite to experimental uncoupling of respiration, which yields noncoupled ET-capacity. Contrasting the concept-driven terminology on CCS (LEAK, OXPHOS, ET) from the historical terminology in bioenergetics (States 1 to 5) provides important insights into the aims and rigorous quality control of diagnostic mitochondrial physiology [1].

We cordially invite scientists and students to support our effort to prepare joint publications for implementing a consistent terminology on respiratory states, to ‘facilitate effective transdisciplinary communication, education, and ultimately further discovery’ and advance the quality and impact of mitochondrial physiology [1].


Bioblast editor: Gnaiger E


Affiliations and support

  1. D. Swarovski Research Lab, Dept. Visceral, Transplant Thoracic Surgery, Medical Univ Innsbruck
  2. Oroboros Instruments, Innsbruck, Austria
Contribution to COST Action CA15203 MitoEAGLE, supported by COST (European Cooperation in Science and Technology), and K-Regio project MitoFit.


References

  1. MitoEAGLE preprint 2018-09-04(41) Mitochondrial respiratory states and rates: Building blocks of mitochondrial physiology Part 1. - www.mitoeagle.org/index.php/MitoEAGLE_preprint_2018-02-08
  2. Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837-45. - »Bioblast link«
  3. Doerrier C, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mészáros AT, Gnaiger E (2018) High-Resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. Methods Mol Biol 1782:31-70. - »Bioblast link«
  4. Gnaiger E (2014) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 4th ed. Mitochondr Physiol Network 19.12. Oroboros MiPNet Publications, Innsbruck:80 pp. - »Bioblast link«
  5. Doerrier C, Garcia-Souza LF, Sumbalova Z, Krumschnabel G, Gnaiger E (2018) Evaluation of anaplerotic pathways to avoid artefacts in respirometric measurement of fatty acid oxidation. MiP2018. - »Bioblast link«
  6. Lemieux H, Blier PU, Gnaiger E (2017) Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers. Sci Rep 7:2840. - »Bioblast link«


Figure

SUIT-catg FNSGpCIV.jpg
Figure 1. ET-pathway control states are defined in mitochondrial preparations complementary to coupling control states. From http://www.bioblast.at/index.php/Electron_transfer-pathway_state


Labels: MiParea: Respiration, mt-Awareness 




Coupling state: LEAK, OXPHOS, ET  Pathway: F, N, S, Gp, DQ, CIV, NS, Other combinations 

Event: Oral