Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Chavanelle 2017 Sci Rep

From Bioblast
Publications in the MiPMap
Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, Delcros G, Peltier SL, Sirvent P (2017) Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci Rep 7:204.

» PMID: 28303003 Open Access

Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, Delcros G, Peltier SL, Sirvent P (2017) Sci Rep

Abstract: Physical activity is known as an effective strategy for prevention and treatment of Type 2 Diabetes. The aim of this work was to compare the effects of a traditional Moderate Intensity Continuous Training (MICT) with a High Intensity Interval Training (HIIT) on glucose metabolism and mitochondrial function in diabetic mice. Diabetic db/db male mice (N = 25) aged 6 weeks were subdivided into MICT, HIIT or control (CON) group. Animals in the training groups ran on a treadmill 5 days/week during 10 weeks. MICT group ran for 80 min (0° slope) at 50-60% of maximal speed (Vmax) reached during an incremental test. HIIT group ran thirteen times 4 minutes (20° slope) at 85-90% of Vmax separated by 2-min-rest periods. HIIT lowered fasting glycaemia and HbA1c compared with CON group (p < 0.05). In all mitochondrial function markers assessed, no differences were noted between the three groups except for total amount of electron transport chain proteins, slightly increased in the HIIT group vs CON. Western blot analysis revealed a significant increase of muscle Glut4 content (about 2 fold) and higher insulin-stimulated Akt phosphorylation ratios in HIIT group. HIIT seems to improve glucose metabolism more efficiently than MICT in diabetic mice by mechanisms independent of mitochondrial adaptations.

Bioblast editor: Kandolf G O2k-Network Lab: FR Aubiere Sirvent P

Labels: MiParea: Respiration, Exercise physiology;nutrition;life style  Pathology: Diabetes 

Organism: Mouse  Tissue;cell: Skeletal muscle  Preparation: Permeabilized tissue 

Coupling state: LEAK, OXPHOS, ET  Pathway: F, N, S, NS, ROX  HRR: Oxygraph-2k