Lisowski 2018 EMBO Rep

From Bioblast
Publications in the MiPMap
Lisowski P, Kannan P, Mlody B, Prigione A (2018) Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep 19:e45432.

Β» PMID: 29661859 Open Access

Lisowski P, Kannan P, Mlody B, Prigione A (2018) EMBO Rep

Abstract: The maintenance of cellular identity requires continuous adaptation to environmental changes. This process is particularly critical for stem cells, which need to preserve their differentiation potential over time. Among the mechanisms responsible for regulating cellular homeostatic responses, mitochondria are emerging as key players. Given their dynamic and multifaceted role in energy metabolism, redox, and calcium balance, as well as cell death, mitochondria appear at the interface between environmental cues and the control of epigenetic identity. In this review, we describe how mitochondria have been implicated in the processes of acquisition and loss of stemness, with a specific focus on pluripotency. Dissecting the biological functions of mitochondria in stem cell homeostasis and differentiation will provide essential knowledge to understand the dynamics of cell fate modulation, and to establish improved stem cell-based medical applications β€’ Keywords: Stem cells, PSCs, differentiation, metabolism, mitochondria, pluripotency β€’ Bioblast editor: Gnaiger E

Cited by

Gnaiger Erich et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1.
Gnaiger E et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. doi:10.26124/bec:2020-0001.v1.



Labels: MiParea: nDNA;cell genetics, mt-Medicine 


Tissue;cell: Stem cells 




BEC 2020.1 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.