Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Sims 2018 JCI Insight

From Bioblast
Publications in the MiPMap
Sims CA, Guan Y, Mukherjee S, Singh K, Botolin P, Davila A Jr, Baur JA (2018) Nicotinamide mononucleotide preserves mitochondrial function and increases survival in hemorrhagic shock. JCI Insight 3:120182.

Β» PMID: 30185676 Open Access

Sims CA, Guan Y, Mukherjee S, Singh K, Botolin P, Davila A Jr, Baur JA (2018) JCI Insight

Abstract: Hemorrhagic shock depletes nicotinamide adenine dinucleotide (NAD) and causes metabolic derangements that, in severe cases, cannot be overcome, even after restoration of blood volume and pressure. However, current strategies to treat acute blood loss do not target cellular metabolism. We hypothesized that supplemental nicotinamide mononucleotide (NMN), the immediate biosynthetic precursor to NAD, would support cellular energetics and enhance physiologic resilience to hemorrhagic shock. In a rodent model of decompensated hemorrhagic shock, rats receiving NMN displayed significantly reduced lactic acidosis and serum IL-6 levels, two strong predictors of mortality in human patients. In both livers and kidneys, NMN increased NAD levels and prevented mitochondrial dysfunction. Moreover, NMN preserved mitochondrial function in isolated hepatocytes cocultured with proinflammatory cytokines, indicating a cell-autonomous protective effect that is independent from the reduction in circulating IL-6. In kidneys, but not in livers, NMN was sufficient to prevent ATP loss following shock and resuscitation. Overall, NMN increased the time animals could sustain severe shock before requiring resuscitation by nearly 25% and significantly improved survival after resuscitation (P = 0.018), whether NMN was given as a pretreatment or only as an adjunct during resuscitation. Thus, we demonstrate that NMN substantially mitigates inflammation, improves cellular metabolism, and promotes survival following hemorrhagic shock. β€’ Keywords: Bioenergetics, Inflammation, Metabolism, Mitochondria, Surgery β€’ Bioblast editor: Plangger M β€’ O2k-Network Lab: US PA Philadelphia Sims CA, US PA Philadelphia Baur JA

Labels: MiParea: Respiration, mt-Medicine, Pharmacology;toxicology 

Stress:Ischemia-reperfusion  Organism: Rat  Tissue;cell: Liver, Kidney  Preparation: Permeabilized cells, Isolated mitochondria 

Coupling state: OXPHOS  Pathway: N, S, CIV, ROX  HRR: Oxygraph-2k 

Labels, 2018-09