Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Chance 1961 J Biol Chem-I"

From Bioblast
(Created page with "{{Publication |title=Chance B, Hollunger G (1961) The interaction of energy and electron transfer reactions in mitochondria I. General properties and nature of the products of su...")
 
Line 1: Line 1:
{{Publication
{{Publication
|title=Chance B, Hollunger G (1961) The interaction of energy and electron transfer reactions in mitochondria I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J Biol Chem 236: 1534-1543.  
|title=Chance B, Hollunger G (1961) The interaction of energy and electron transfer reactions in mitochondria I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J Biol Chem 236: 1534-1543.
|info=[http://www.ncbi.nlm.nih.gov/pubmed/13692277 PMID: 13692277]; [http://www.jbc.org/content/236/5/1534.full.pdf+html Open Access]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/13692277 PMID: 13692277]; [http://www.jbc.org/content/236/5/1534.full.pdf+html Open Access]
|authors=Chance B, Hollunger G
|authors=Chance B, Hollunger G
|year=1961
|year=1961
|journal=J Biol Chem
|journal=J Biol Chem
|abstract=A  thermodynamically  improbable  reduction  of  pyridine nucleotide  caused  by  the  addition  of  succinate  to  isolated  mitochondria  has  been  demonstrated.  The  material  so  reduced  exhibits  kinetic  responses,  some  of  which  can  suggest  its  consideration  as  a  member  of  the  respiratory  chain,  but  a  quantitative examination  of  the  kinetics  of  oxidation  and  reduction  shows that  only  a  small  portion  of  the  total  respiratory  activity  in succinate  oxidation  passes  through  the  diphosphopyridine  nucleotide-linked  pathway.
The  nature  of  the  reduction  product  has  been  examined  in heart,  liver,  and  guinea  pig  kidney  mitochondria  and  is  found  to be  material  absorbing  at  340  mµ  and  having  a  fluorescence  emission  maximum  at  440  mµ.  Direct  chemical  assays  on  kidney mitochondria  indicate  that  the  reduced  material  is  diphosphopyridine  nucleotide.  A  preliminary  evaluation  of  various  hypotheses  to  explain  this  result  leads  us  tentatively  to  reject hypotheses  based  upon a  single  pool  of  mitochondrial  pyridine nucleotide  in  which  diphosphopyridine  nucleotide  and  succinate compete  for  oxidizing  equivalents  from  the  cytochrome  chain.
Further  indication  of  the  complexities  of  this  reaction  is  that respiration  can  be  initiated  by  succinate  without  measurable pyridine  nucleotide  reduction  and  that  a  transition  from  aerobiosis  in  state  3  to  anaerobiosis  (state  5)  can  lead  to  a  higher oxidation  level  of  pyridine  nucleotide  than  was  observed  aerobically  in  state  4.  These  observations  suggest  that  the  presence of  adenosine  5’-diphosphate  inhibits  pyridine  nucleotide  reduction  under  both  aerobic  and  anaerobic  conditions  and  support the  possibility  that  an  energy-linked  reaction  may  be  involved.
|keywords=energy transfer, eletcron transfer, succinate, pyridine nucleotide, ADP
}}
}}
{{Labeling
{{Labeling
|organism=Other Mammal
|tissues=Cardiac muscle, Hepatocyte; Liver, Kidney
|preparations=Isolated Mitochondria
|enzymes=Complex II; Succinate Dehydrogenase
|kinetics=ADP; Pi
|topics=Respiration; OXPHOS; ETS Capacity, Aerobic and Anaerobic Metabolism, ATP; ADP; AMP; PCr
|additional=Made history
|additional=Made history
}}
}}

Revision as of 12:53, 12 June 2012

Publications in the MiPMap
Chance B, Hollunger G (1961) The interaction of energy and electron transfer reactions in mitochondria I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J Biol Chem 236: 1534-1543.

» PMID: 13692277; Open Access

Chance B, Hollunger G (1961) J Biol Chem

Abstract: A thermodynamically improbable reduction of pyridine nucleotide caused by the addition of succinate to isolated mitochondria has been demonstrated. The material so reduced exhibits kinetic responses, some of which can suggest its consideration as a member of the respiratory chain, but a quantitative examination of the kinetics of oxidation and reduction shows that only a small portion of the total respiratory activity in succinate oxidation passes through the diphosphopyridine nucleotide-linked pathway.

The nature of the reduction product has been examined in heart, liver, and guinea pig kidney mitochondria and is found to be material absorbing at 340 mµ and having a fluorescence emission maximum at 440 mµ. Direct chemical assays on kidney mitochondria indicate that the reduced material is diphosphopyridine nucleotide. A preliminary evaluation of various hypotheses to explain this result leads us tentatively to reject hypotheses based upon a single pool of mitochondrial pyridine nucleotide in which diphosphopyridine nucleotide and succinate compete for oxidizing equivalents from the cytochrome chain.

Further indication of the complexities of this reaction is that respiration can be initiated by succinate without measurable pyridine nucleotide reduction and that a transition from aerobiosis in state 3 to anaerobiosis (state 5) can lead to a higher oxidation level of pyridine nucleotide than was observed aerobically in state 4. These observations suggest that the presence of adenosine 5’-diphosphate inhibits pyridine nucleotide reduction under both aerobic and anaerobic conditions and support the possibility that an energy-linked reaction may be involved. Keywords: energy transfer, eletcron transfer, succinate, pyridine nucleotide, ADP


Labels:


Organism: Other Mammal"Other Mammal" is not in the list (Human, Pig, Mouse, Rat, Guinea pig, Bovines, Horse, Dog, Rabbit, Cat, ...) of allowed values for the "Mammal and model" property.  Tissue;cell: Cardiac muscle"Cardiac muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property., Hepatocyte; Liver"Hepatocyte; Liver" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property., Kidney  Preparation: Isolated Mitochondria"Isolated Mitochondria" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Complex II; Succinate Dehydrogenase"Complex II; Succinate Dehydrogenase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Aerobic and Anaerobic Metabolism"Aerobic and Anaerobic Metabolism" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., ATP; ADP; AMP; PCr"ATP; ADP; AMP; PCr" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 



Made history