Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Distelmaier 2009 Brain

From Bioblast
Revision as of 01:46, 4 August 2023 by Gnaiger Erich (talk | contribs)
Publications in the MiPMap
Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132:833-42.

» PMID: 19336460 Open Access

Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Brain

Abstract: Mitochondria are essential for cellular bioenergetics by way of energy production in the form of ATP through the process of oxidative phosphorylation. This crucial task is executed by five multi-protein complexes of which mitochondrial NADH:ubiquinone oxidoreductase or complex I is the largest and most complicated one. During recent years, mutations in nuclear genes encoding structural subunits of complex I have been identified as a cause of devastating neurodegenerative disorders with onset in early childhood. Here, we present a comprehensive overview of clinical, biochemical and cell physiological information of 15 children with isolated, nuclear-encoded complex I deficiency, which was generated in a joint effort of clinical and fundamental research. Our findings point to a rather homogeneous clinical picture in these children and drastically illustrate the severity of the disease. In extensive live cell studies with patient-derived skin fibroblasts we uncovered important cell physiological aspects of complex I deficiency, which point to a central regulatory role of cellular reactive oxygen species production and altered mitochondrial membrane potential in the pathogenesis of the disorder. Moreover, we critically discuss possible interconnections between clinical signs and cellular pathology. Finally, our results indicate apparent differences to drug therapy on the cellular level, depending on the severity of the catalytic defect and identify modulators of cellular Ca(2+) homeostasis as new candidates in the therapy of complex I deficiency.


O2k-Network Lab: NL Nijmegen Koopman WJ, NL Nijmegen Rodenburg R


Labels:



Enzyme: Complex I, Complex II;succinate dehydrogenase 




Distelmaier 2009 Brain CORRECTION.png

Correction: FADH2 and Complex II

Ambiguity alert.png
FADH2 is shown as the substrate feeding electrons into Complex II (CII). This is wrong and requires correction - for details see Gnaiger (2024).
Gnaiger E (2024) Complex II ambiguities ― FADH2 in the electron transfer system. J Biol Chem 300:105470. https://doi.org/10.1016/j.jbc.2023.105470 - »Bioblast link«