Friederich-Persson 2012 PLoS One: Difference between revisions

From Bioblast
(Created page with "{{Publication |title=Friederich-Persson M, Aslam S, Nordquist L, Welch WJ, Wilcox CS, Palm F (2012) Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine n...")
ย 
No edit summary
ย 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{Publication
{{Publication
|title=Friederich-Persson M, Aslam S, Nordquist L, Welch WJ, Wilcox CS, Palm F (2012) Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys. PLoS One 7:e39635. ย 
|title=Friederich-Persson M, Aslam S, Nordquist L, Welch WJ, Wilcox CS, Palm F (2012) Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys. PLoS One 7:e39635.
|info=[http://www.ncbi.nlm.nih.gov/pubmed/22768304 PMID:22768304]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/22768304 PMID:22768304 Open Access]
|authors=Friederich-Persson M, Aslam S, Nordquist L, Welch WJ, Wilcox CS, Palm F
|authors=Friederich-Persson M, Aslam S, Nordquist L, Welch WJ, Wilcox CS, Palm F
|year=2012
|year=2012
|journal=PLoS One
|journal=PLoS One
|abstract=Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (-30-50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT.
|abstract=Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (-30-50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT.
|mipnetlab=SE Uppsala Liss P
}}
}}
{{Labeling
{{Labeling
|area=Respiration, Genetic knockout;overexpression
|organism=Rat
|organism=Rat
|tissues=Kidney
|tissues=Kidney
Line 14: Line 16:
|diseases=Diabetes
|diseases=Diabetes
|topics=Uncoupler
|topics=Uncoupler
|couplingstates=LEAK, OXPHOS
|pathways=N
|instruments=Oxygraph-2k
|instruments=Oxygraph-2k
|additional=Labels
}}
}}

Latest revision as of 16:35, 7 November 2016

Publications in the MiPMap
Friederich-Persson M, Aslam S, Nordquist L, Welch WJ, Wilcox CS, Palm F (2012) Acute knockdown of uncoupling protein-2 increases uncoupling via the adenine nucleotide transporter and decreases oxidative stress in diabetic kidneys. PLoS One 7:e39635.

ยป PMID:22768304 Open Access

Friederich-Persson M, Aslam S, Nordquist L, Welch WJ, Wilcox CS, Palm F (2012) PLoS One

Abstract: Increased O(2) metabolism resulting in chronic hypoxia is common in models of endstage renal disease. Mitochondrial uncoupling increases O(2) consumption but the ensuing reduction in mitochondrial membrane potential may limit excessive oxidative stress. The present study addressed the hypothesis that mitochondrial uncoupling regulates mitochondria function and oxidative stress in the diabetic kidney. Isolated mitochondria from kidney cortex of control and streptozotocin-induced diabetic rats were studied before and after siRNA knockdown of uncoupling protein-2 (UCP-2). Diabetes resulted in increased UCP-2 protein expression and UCP-2-mediated uncoupling, but normal mitochondria membrane potential. This uncoupling was inhibited by GDP, which also increased the membrane potential. siRNA reduced UCP-2 protein expression in controls and diabetics (-30-50%), but paradoxically further increased uncoupling and markedly reduced the membrane potential. This siRNA mediated uncoupling was unaffected by GDP but was blocked by ADP and carboxyatractylate (CAT). Mitochondria membrane potential after UCP-2 siRNA was unaffected by GDP but increased by CAT. This demonstrated that further increased mitochondria uncoupling after siRNA towards UCP-2 is mediated through the adenine nucleotide transporter (ANT). The increased oxidative stress in the diabetic kidney, manifested as increased thiobarbituric acids, was reduced by knocking down UCP-2 whereas whole-body oxidative stress, manifested as increased circulating malondialdehyde, remained unaffected. All parameters investigated were unaffected by scrambled siRNA. In conclusion, mitochondrial uncoupling via UCP-2 regulates mitochondria membrane potential in diabetes. However, blockade of the diabetes-induced upregulation of UCP- 2 results in excessive uncoupling and reduced oxidative stress in the kidney via activation of ANT.


โ€ข O2k-Network Lab: SE Uppsala Liss P


Labels: MiParea: Respiration, Genetic knockout;overexpression  Pathology: Diabetes  Stress:Oxidative stress;RONS  Organism: Rat  Tissue;cell: Kidney  Preparation: Isolated mitochondria 

Regulation: Uncoupler  Coupling state: LEAK, OXPHOS  Pathway:HRR: Oxygraph-2k 


Cookies help us deliver our services. By using our services, you agree to our use of cookies.