Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Holloway 2013 Abstract MiP2013"

From Bioblast
Line 1: Line 1:
{{Abstract
{{Abstract
|title=Holloway GP (2013) Tissue specific changes in respiratory substrate kinetics in the ZDF rat and in response to resveratrol supplementation. Mitochondr Physiol Network 18.08.
|title=Holloway GP (2013) Tissue specific changes in respiratory substrate kinetics in the ZDF rat and in response to resveratrol supplementation. Mitochondr Physiol Network 18.08.
|info=[http://www.mitophysiology.org/?MiP2013 MiP2013], [[Laner 2013 Mitochondr Physiol Network MiP2013|Book of Abstracts Open Access]]
|info=[[File:Graham.JPG|right|150px|Graham Holloway]] [http://www.mitophysiology.org/?MiP2013 MiP2013], [[Laner 2013 Mitochondr Physiol Network MiP2013|Book of Abstracts Open Access]]
|authors=Holloway GP
|authors=Holloway GP
|year=2013
|year=2013
|event=MiP2013 Programme
|event=MiP2013 Programme
|abstract=[[File:Graham.JPG|right|150px|Graham Holloway]]
|abstract=Mitochondrial dysfunction has been implicated in both high-fat diet induced skeletal muscle insulin resistance and diastolic heart failure. However there is considerable controversy regarding these concepts, as mitochondrial function has traditionally been assessed in the presence of saturating substrates (ADP and reducing equivalents), conditions which may not reflect the in vivo situation. Β 
Mitochondrial dysfunction has been implicated in both high-fat diet induced skeletal muscle insulin resistance and diastolic heart failure. However there is considerable controversy regarding these concepts, as mitochondrial function has traditionally been assessed in the presence of saturating substrates (ADP and reducing equivalents), conditions which may not reflect the in vivo situation. Β 


Therefore, we investigated respiratory substrate kinetics in the heart and skeletal muscle in a model of type 2 diabetes, the ZDF rat. In addition, we determined the ability of the polyphenolic compound resveratrol to recover potentially impaired kinetic profiles in these tissues. Intriguingly, maximal respiration was not altered in either muscle in the ZDF rat, however tissue specific differences were observed in respiratory kinetics. Specifically, in skeletal muscle, submaximal ADP-stimulated respiration rates were lower (''P''<0.05) in ZDF rats, which coincided with decreased adenine nucleotide translocase 2 (ANT2) protein content. This decrease in submaximal ADP-stimulated respiration occurred in the absence of a decrease in electron transfer system function. Treating ZDF rats with resveratrol improved skeletal muscle insulin resistance and this was associated with increased submaximal ADP-stimulated respiration rates as well as an increase in ANT2 protein content. These results coincided with a greater ability of ADP to attenuate mitochondrial ROS emission and an improvement in cellular redox balance. In the heart, unlike skeletal muscle ADP kinetics were not altered by either genotype or resveratrol supplementation. In contrast, while P-CoA sensitivity was impaired (higher ''K''m’) in the heart of ZDF rats, resveratrol normalized P-CoA kinetics, which coincided with a recovered diastolic function and myocardial lipid profile (TAG, DAG and ceramide species). Altogether, these data suggest that mitochondrial dysfunction is present in the skeletal muscle and heart of type 2 diabetic animals, and resveratrol improves bioenergetics by altering respiratory kinetics in a tissue specific manner.
Therefore, we investigated respiratory substrate kinetics in the heart and skeletal muscle in a model of type 2 diabetes, the ZDF rat. In addition, we determined the ability of the polyphenolic compound resveratrol to recover potentially impaired kinetic profiles in these tissues. Intriguingly, maximal respiration was not altered in either muscle in the ZDF rat, however tissue specific differences were observed in respiratory kinetics. Specifically, in skeletal muscle, submaximal ADP-stimulated respiration rates were lower (''P''<0.05) in ZDF rats, which coincided with decreased adenine nucleotide translocase 2 (ANT2) protein content. This decrease in submaximal ADP-stimulated respiration occurred in the absence of a decrease in electron transfer system function. Treating ZDF rats with resveratrol improved skeletal muscle insulin resistance and this was associated with increased submaximal ADP-stimulated respiration rates as well as an increase in ANT2 protein content. These results coincided with a greater ability of ADP to attenuate mitochondrial ROS emission and an improvement in cellular redox balance. In the heart, unlike skeletal muscle ADP kinetics were not altered by either genotype or resveratrol supplementation. In contrast, while P-CoA sensitivity was impaired (higher ''K''m’) in the heart of ZDF rats, resveratrol normalized P-CoA kinetics, which coincided with a recovered diastolic function and myocardial lipid profile (TAG, DAG and ceramide species). Altogether, these data suggest that mitochondrial dysfunction is present in the skeletal muscle and heart of type 2 diabetic animals, and resveratrol improves bioenergetics by altering respiratory kinetics in a tissue specific manner.
Line 25: Line 24:
|additional=MiP2013
|additional=MiP2013
}}
}}
__TOC__
== Affiliations and author contributions ==
== Affiliations and author contributions ==
1 - Dept. Human Health and Nutritional Sciences, University of Guelph, ON, Canada
Dept Human Health and Nutritional Sciences, University of Guelph, ON, Canada. - Email: ghollowa@uoguelph.ca
Β 
Email: ghollowa@uoguelph.ca

Revision as of 09:33, 15 September 2013

Holloway GP (2013) Tissue specific changes in respiratory substrate kinetics in the ZDF rat and in response to resveratrol supplementation. Mitochondr Physiol Network 18.08.

Link:

Graham Holloway

MiP2013, Book of Abstracts Open Access

Holloway GP (2013)

Event: MiP2013 Programme

Mitochondrial dysfunction has been implicated in both high-fat diet induced skeletal muscle insulin resistance and diastolic heart failure. However there is considerable controversy regarding these concepts, as mitochondrial function has traditionally been assessed in the presence of saturating substrates (ADP and reducing equivalents), conditions which may not reflect the in vivo situation.

Therefore, we investigated respiratory substrate kinetics in the heart and skeletal muscle in a model of type 2 diabetes, the ZDF rat. In addition, we determined the ability of the polyphenolic compound resveratrol to recover potentially impaired kinetic profiles in these tissues. Intriguingly, maximal respiration was not altered in either muscle in the ZDF rat, however tissue specific differences were observed in respiratory kinetics. Specifically, in skeletal muscle, submaximal ADP-stimulated respiration rates were lower (P<0.05) in ZDF rats, which coincided with decreased adenine nucleotide translocase 2 (ANT2) protein content. This decrease in submaximal ADP-stimulated respiration occurred in the absence of a decrease in electron transfer system function. Treating ZDF rats with resveratrol improved skeletal muscle insulin resistance and this was associated with increased submaximal ADP-stimulated respiration rates as well as an increase in ANT2 protein content. These results coincided with a greater ability of ADP to attenuate mitochondrial ROS emission and an improvement in cellular redox balance. In the heart, unlike skeletal muscle ADP kinetics were not altered by either genotype or resveratrol supplementation. In contrast, while P-CoA sensitivity was impaired (higher Km’) in the heart of ZDF rats, resveratrol normalized P-CoA kinetics, which coincided with a recovered diastolic function and myocardial lipid profile (TAG, DAG and ceramide species). Altogether, these data suggest that mitochondrial dysfunction is present in the skeletal muscle and heart of type 2 diabetic animals, and resveratrol improves bioenergetics by altering respiratory kinetics in a tissue specific manner.

β€’ Keywords: Pyruvate and P-CoA

β€’ O2k-Network Lab: CA Guelph Holloway GP


Labels: MiParea: Respiration, Genetic knockout;overexpression, Comparative MiP;environmental MiP, Pharmacology;toxicology  Pathology: Diabetes, Obesity  Stress:RONS; Oxidative Stress"RONS; Oxidative Stress" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Rat  Tissue;cell: Heart, Skeletal muscle  Preparation: Permeabilized tissue  Enzyme: Adenine Nucleotide Translocase"Adenine Nucleotide Translocase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: ADP, Redox state, Substrate  Coupling state: OXPHOS 

HRR: Oxygraph-2k 

MiP2013 

Affiliations and author contributions

Dept Human Health and Nutritional Sciences, University of Guelph, ON, Canada. - Email: ghollowa@uoguelph.ca