Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Monge 2009 Can J Physiol Pharmacol 87:318-326.

From Bioblast
Revision as of 09:58, 12 August 2011 by Purtschera (talk | contribs)
Publications in the MiPMap
Monge C, Beraud N, Tepp K, Pelloux S, Chahboun S, Kaambre T, Kadaja L, Roosimaa M, Piirsoo A, Tourneur Y, Kuznetsov AV, Saks V, Seppet E (2009) Comparative analysis of the bioenergetics of adult cardiomyocytes and nonbeating HL-1 cells: respiratory chain activities, glycolytic enzyme profiles, and metabolic fluxes. Can. J. Physiol. Pharmacol. 87: 318-326.

Β» PMID: 19370085

Monge C, Beraud N, Tepp K, Pelloux S, Chahboun S, Kaambre T, Kadaja L, Roosimaa M, Piirsoo A, Tourneur Y, Kuznetsov AV, Saks V, Seppet E (2009) Can. J. Physiol. Pharmacol.

Abstract: Comparative analysis of the bioenergetic parameters of adult rat cardiomyocytes (CM) and HL-1 cells with very different structure but similar cardiac phenotype was carried out with the aim of revealing the importance of the cell structure for regulation of its energy fluxes. Confocal microscopic analysis showed very different mitochondrial arrangement in these cells. The cytochrome content per milligram of cell protein was decreased in HL-1 cells by a factor of 7 compared with CM. In parallel, the respiratory chain complex activities were decreased by 4-8 times in the HL-1 cells. On the contrary, the activities of glycolytic enzymes, hexokinase (HK), and pyruvate kinase (PK) were increased in HL-1 cells, and these cells effectively transformed glucose into lactate. At the same time, the creatine kinase (CK) activity was significantly decreased in HL-1 cells. In conclusion, the results of this study comply with the assumption that in contrast to CM in which oxidative phosphorylation is a predominant provider of ATP and the CK system is a main carrier of energy from mitochondria to ATPases, in HL-1 cells the energy metabolism is based mostly on the glycolytic reactions coupled to oxidative phosphorylation through HK.


β€’ O2k-Network Lab: EE_Tallinn_Saks V, FR_Grenoble_Saks V, EE_Tartu_Seppet E


Labels:


Organism: Rat  Tissue;cell: Cardiac Muscle"Cardiac Muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Intact Cell; Cultured; Primary"Intact Cell; Cultured; Primary" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Marker Enzyme"Marker Enzyme" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Substrate; Glucose; TCA Cycle"Substrate; Glucose; TCA Cycle" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k