Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Mould 2023 Front Physiol

From Bioblast
Revision as of 23:37, 7 February 2024 by Gnaiger Erich (talk | contribs) (Created page with "{{Publication |title=Mould RR, Kalampouka I, Thomas EL, Guy GW, Nunn AVW, Bell JD (2023) Non-chemical signalling between mitochondria. Front Physiol 14:1268075. https://doi.or...")
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Publications in the MiPMap
Mould RR, Kalampouka I, Thomas EL, Guy GW, Nunn AVW, Bell JD (2023) Non-chemical signalling between mitochondria. Front Physiol 14:1268075. https://doi.org/10.3389/fphys.2023.1268075

Β» PMID: 37811497 Open Access

Mould RR, Kalampouka I, Thomas EL, Guy GW, Nunn AVW, Bell JD (2023) Front Physiol

Abstract: A wide variety of studies have reported some form of non-chemical or non-aqueous communication between physically isolated organisms, eliciting changes in cellular proliferation, morphology, and/or metabolism. The sources and mechanisms of such signalling pathways are still unknown, but have been postulated to involve vibration, volatile transmission, or light through the phenomenon of ultraweak photon emission. Here, we report non-chemical communication between isolated mitochondria from MCF7 (cancer) and MCF10A (non-cancer) cell lines. We found that mitochondria in one cuvette stressed by an electron transport chain inhibitor, antimycin, alters the respiration of mitochondria in an adjacent, but chemically and physically separate cuvette, significantly decreasing the rate of oxygen consumption compared to a control (p = <0.0001 in MCF7 and MCF10A mitochondria). Moreover, the changes in O2-consumption were dependent on the origin of mitochondria (cancer vs. non-cancer) as well as the presence of "ambient" light. Our results support the existence of non-chemical signalling between isolated mitochondria. The experimental design suggests that the non-chemical communication is light-based, although further work is needed to fully elucidate its nature.

β€’ Bioblast editor: Gnaiger E


Labels: MiParea: Respiration  Pathology: Cancer 


Preparation: Intact cells 


Coupling state: ROUTINE 


Quantum biology, PhotoBiology