Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has abstract" with value "Disruption of cellular redox homeostasis is implicated in a wide variety of pathologic conditions and aging. A fundamental factor that dictates such balance is the ratio between mitochondria-mediated complete oxygen reduction into water and incomplete reduction into superoxide radical by mitochondria and NADPH oxidase (NOX) enzymatic activity. Here we determined mitochondrial as well as NOX-dependent rates of oxygen consumption in parallel with H<sub>2</sub>O<sub>2</sub> generation in freshly isolated synaptosomes using high-resolution respirometry combined with fluorescence or electrochemical sensory. Our results indicate that, although synaptic mitochondria exhibit substantially higher respiratory activities (8-82 folds greater than NOX oxygen consumption depending on mitochondrial respiratory state), NADPH-dependent oxygen consumption is associated with greater H<sub>2</sub>O<sub>2</sub> production (6-7 folds higher NOX-H<sub>2</sub>O<sub>2</sub>). We also show that, in terms of the consumed oxygen, while synaptic mitochondria ‘leaked’ 0.71% ± 0.12 H<sub>2</sub>O<sub>2</sub> during NAD<sup>+</sup>-linked resting, 0.21% ± 0.04 during NAD<sup>+</sup>-linked active, and 0.07% ± 0.02 during FAD<sup>+</sup>-linked active respirations, NOX converted 38% ± 13 of O<sub>2</sub> into H<sub>2</sub>O<sub>2</sub>. Our results indicate that NOX rather than mitochondria is the major source of synaptic H<sub>2</sub>O<sub>2</sub>. The present approach may assist in the identification of redox-modulating synaptic factors that underlie a variety of physiological and pathological processes in neurons.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Abdel-Rahman 2016 Oxid Med Cell Longev  + (Disruption of cellular redox homeostasis iDisruption of cellular redox homeostasis is implicated in a wide variety of pathologic conditions and aging. A fundamental factor that dictates such balance is the ratio between mitochondria-mediated complete oxygen reduction into water and incomplete reduction into superoxide radical by mitochondria and NADPH oxidase (NOX) enzymatic activity. Here we determined mitochondrial as well as NOX-dependent rates of oxygen consumption in parallel with H<sub>2</sub>O<sub>2</sub> generation in freshly isolated synaptosomes using high-resolution respirometry combined with fluorescence or electrochemical sensory. Our results indicate that, although synaptic mitochondria exhibit substantially higher respiratory activities (8-82 folds greater than NOX oxygen consumption depending on mitochondrial respiratory state), NADPH-dependent oxygen consumption is associated with greater H<sub>2</sub>O<sub>2</sub> production (6-7 folds higher NOX-H<sub>2</sub>O<sub>2</sub>). We also show that, in terms of the consumed oxygen, while synaptic mitochondria ‘leaked’ 0.71% ± 0.12 H<sub>2</sub>O<sub>2</sub> during NAD<sup>+</sup>-linked resting, 0.21% ± 0.04 during NAD<sup>+</sup>-linked active, and 0.07% ± 0.02 during FAD<sup>+</sup>-linked active respirations, NOX converted 38% ± 13 of O<sub>2</sub> into H<sub>2</sub>O<sub>2</sub>. Our results indicate that NOX rather than mitochondria is the major source of synaptic H<sub>2</sub>O<sub>2</sub>. The present approach may assist in the identification of redox-modulating synaptic factors that underlie a variety of physiological and pathological processes in neurons.of synaptic H<sub>2</sub>O<sub>2</sub>. The present approach may assist in the identification of redox-modulating synaptic factors that underlie a variety of physiological and pathological processes in neurons.)