Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Thayer 1975 J Biol Chem"

From Bioblast
(Created page with "{{Publication |title=Thayer WS, Hinkle PC (1975) Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial p...")
Β 
Line 1: Line 1:
{{Publication
{{Publication
|title=Thayer WS, Hinkle PC (1975) Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles. J Biol Chem 250: 5330-5335. Β 
|title=Thayer WS, Hinkle PC (1975) Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles. J Biol Chem 250: 5330-5335.
|info=[http://www.jbc.org/content/250/14/5330.full.pdf+html PMID: 237916]
|info=[http://www.jbc.org/content/250/14/5330.full.pdf+html PMID: 237916 Open Access]
|authors=Thayer WS, Hinkle PC
|authors=Thayer WS, Hinkle PC
|year=1975
|year=1975

Revision as of 16:19, 20 June 2012

Publications in the MiPMap
Thayer WS, Hinkle PC (1975) Synthesis of adenosine triphosphate by an artificially imposed electrochemical proton gradient in bovine heart submitochondrial particles. J Biol Chem 250: 5330-5335.

Β» PMID: 237916 Open Access

Thayer WS, Hinkle PC (1975) J Biol Chem

Abstract: Submitochondrial particles subjected to an artificially imposed electrochemical proton gradient consisting of a pH gradient (acid to base transition) and membrane potential (low to high K-+ transition in the presence of valinomycin) catalyzed the net synthesis of 2.5 nmol of [-32P]ATP per mg of protein from ADP and 32-Pi. Optimal reaction conditions included incubation of submitochondrial particles in malonate at pH 5.0 with valinomycin in the absence of added K-+, followed by a rapid transition to pH 7.5 and 100 mM K-+. ATP synthesis continued for about 6 s and was sensitive to uncouplers or oligomycin but insensitive to inhibitors of electron transport. Lower amounts of ATP were formed by either the pH gradient (25%) of K-+ gradient (15%) alone. These results demonstrate that an electrochemical gradient of protons can drive the synthesis of ATP by reversal of the proton-translocating ATPase independent of electron transport. β€’ Keywords: ATP synthesis, proton gradient, submitochondrial particles


Labels:


Organism: Other Mammal"Other Mammal" is not in the list (Human, Pig, Mouse, Rat, Guinea pig, Bovines, Horse, Dog, Rabbit, Cat, ...) of allowed values for the "Mammal and model" property.  Tissue;cell: Cardiac muscle"Cardiac muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Isolated Mitochondria"Isolated Mitochondria" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property. 

Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Ion Homeostasis"Ion Homeostasis" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., ATP; ADP; AMP; PCr"ATP; ADP; AMP; PCr" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 



Made history