Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Wang 2011 Mol Oncol"

From Bioblast
Line 7: Line 7:
|abstract=Although mitochondrial respiration is decreased in most cancer cells, the role of this decrease in carcinogenesis and cancer progression is still unclear. To better understand this phenomenon, instead of further inhibiting mitochondrial function, we induced mitochondrial biogenesis in transformed cells by activating the peroxisome proliferator-activated receptors (PPARs)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathways. This was achieved by treating the cells with bezafibrate, a PPARs panagonist that also enhances PGC-1α expression. We confirmed that bezafibrate treatment led to increased mitochondrial proteins and enzyme functions. We found that cells with increased mitochondrial biogenesis had decreased growth rates in glucose-containing medium. In addition, they became less invasive, which was directly linked to the reduced lactate levels. Surprisingly, even though bezafibrate-treated cells had higher levels of mitochondrial markers, total respiration was not significantly altered. However, respiratory coupling, and ATP levels were. Our data show that by increasing the efficiency of the mitochondrial oxidative phosphorylation system, cancer progression is hampered by decreases in cell proliferation and invasiveness.
|abstract=Although mitochondrial respiration is decreased in most cancer cells, the role of this decrease in carcinogenesis and cancer progression is still unclear. To better understand this phenomenon, instead of further inhibiting mitochondrial function, we induced mitochondrial biogenesis in transformed cells by activating the peroxisome proliferator-activated receptors (PPARs)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathways. This was achieved by treating the cells with bezafibrate, a PPARs panagonist that also enhances PGC-1α expression. We confirmed that bezafibrate treatment led to increased mitochondrial proteins and enzyme functions. We found that cells with increased mitochondrial biogenesis had decreased growth rates in glucose-containing medium. In addition, they became less invasive, which was directly linked to the reduced lactate levels. Surprisingly, even though bezafibrate-treated cells had higher levels of mitochondrial markers, total respiration was not significantly altered. However, respiratory coupling, and ATP levels were. Our data show that by increasing the efficiency of the mitochondrial oxidative phosphorylation system, cancer progression is hampered by decreases in cell proliferation and invasiveness.
|keywords=peroxisome proliferator-activated receptors (PPARs)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α), bezafibrate
|keywords=peroxisome proliferator-activated receptors (PPARs)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α), bezafibrate
|mipnetlab=US FL Miami Moraes CT
}}
}}
{{Labeling
{{Labeling

Revision as of 12:48, 2 March 2012

Publications in the MiPMap
Wang X (Xiao), Moraes CT (2011) Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5: 399-409.

» PMID: 21855427

Wang X (Xiao), Moraes CT (2011) Mol Oncol

Abstract: Although mitochondrial respiration is decreased in most cancer cells, the role of this decrease in carcinogenesis and cancer progression is still unclear. To better understand this phenomenon, instead of further inhibiting mitochondrial function, we induced mitochondrial biogenesis in transformed cells by activating the peroxisome proliferator-activated receptors (PPARs)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathways. This was achieved by treating the cells with bezafibrate, a PPARs panagonist that also enhances PGC-1α expression. We confirmed that bezafibrate treatment led to increased mitochondrial proteins and enzyme functions. We found that cells with increased mitochondrial biogenesis had decreased growth rates in glucose-containing medium. In addition, they became less invasive, which was directly linked to the reduced lactate levels. Surprisingly, even though bezafibrate-treated cells had higher levels of mitochondrial markers, total respiration was not significantly altered. However, respiratory coupling, and ATP levels were. Our data show that by increasing the efficiency of the mitochondrial oxidative phosphorylation system, cancer progression is hampered by decreases in cell proliferation and invasiveness. Keywords: peroxisome proliferator-activated receptors (PPARs)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α), bezafibrate

O2k-Network Lab: US FL Miami Moraes CT


Labels:

Stress:Cancer; Apoptosis; Cytochrome c"Cancer; Apoptosis; Cytochrome c" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: z in prep"z in prep" is not in the list (Human, Pig, Mouse, Rat, Guinea pig, Bovines, Horse, Dog, Rabbit, Cat, ...) of allowed values for the "Mammal and model" property.  Tissue;cell: z in prep"z in prep" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: z in prep"z in prep" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: z in prep"z in prep" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: z in prep"z in prep" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k