Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Wieckowski 2013 Abstract MiP2013"

From Bioblast
Line 1: Line 1:
{{Abstract
{{Abstract
|title=Wieckowski MR, Karkucinska-Wieckowska A, Wojtala A, Lebiedzinska M, Pronicki M, Duszynski J (2013) Mitochondrial bioenergetic parameters, reactive oxygen species production and the status of antioxidant defense system can be used to differentiate mitochondrial defects studied in the fibroblasts from patients with various mitochondrial disorders. Mitochondrial Physiology Network 18.08.
|title=Wieckowski MR, Karkucinska-Wieckowska A, Wojtala A, Lebiedzinska M, Pronicki M, Duszynski J (2013) Mitochondrial bioenergetic parameters, reactive oxygen species production and the status of antioxidant defense system can be used to differentiate mitochondrial defects studied in the fibroblasts from patients with various mitochondrial disorders. Mitochondr Physiol Network 18.08.
|authors=Wieckowski MR, Karkucinska-Wieckowska A, Wojtala A, Lebiedzinska M, Pronicki M, Duszynski J
|authors=Wieckowski MR, Karkucinska-Wieckowska A, Wojtala A, Lebiedzinska M, Pronicki M, Duszynski J
|year=2013
|year=2013
Line 10: Line 10:
Anomalies in the bioenergetic parameters, modification of the antioxidant enzymes levels as well as enhancement of intracellular ROS confirmed the occurrence of oxidative stress in the fibroblasts. Principal component analysis showed that individual defects were grouped in separate clusters. This indicates that mitochondrial defects in the patients’ fibroblasts are characterized by a unique profile of important parameters of cellular bioenergetics and ROS homeostasis as well as that the different molecular background has a unique impact on the mitochondrial and antioxidant defense system dysfunctional pattern.
Anomalies in the bioenergetic parameters, modification of the antioxidant enzymes levels as well as enhancement of intracellular ROS confirmed the occurrence of oxidative stress in the fibroblasts. Principal component analysis showed that individual defects were grouped in separate clusters. This indicates that mitochondrial defects in the patients’ fibroblasts are characterized by a unique profile of important parameters of cellular bioenergetics and ROS homeostasis as well as that the different molecular background has a unique impact on the mitochondrial and antioxidant defense system dysfunctional pattern.


This approach may open new possibility to use the proposed set of mitochondrial parameters and comparative analysis in the studies essential for distinguishing the molecular background of mitochondrial defect.  
This approach may open new possibility to use the proposed set of mitochondrial parameters and comparative analysis in the studies essential for distinguishing the molecular background of mitochondrial defect.
 
|mipnetlab=PL_Warsaw_Szewczyk A
|mipnetlab=PL_Warsaw_Szewczyk A
}}
}}

Revision as of 19:38, 6 July 2013

Wieckowski MR, Karkucinska-Wieckowska A, Wojtala A, Lebiedzinska M, Pronicki M, Duszynski J (2013) Mitochondrial bioenergetic parameters, reactive oxygen species production and the status of antioxidant defense system can be used to differentiate mitochondrial defects studied in the fibroblasts from patients with various mitochondrial disorders. Mitochondr Physiol Network 18.08.

Link:

Wieckowski MR, Karkucinska-Wieckowska A, Wojtala A, Lebiedzinska M, Pronicki M, Duszynski J (2013)

Event: MiP2013

Defects in the mitochondrial respiratory system are often associated with mitochondrial dysfunction and increased reactive oxygen species (ROS) production within the cell. The aim of our studies was to determine the differences in the mitochondrial bioenergetic parameters, ROS production and antioxidant enzymes status profiles between different types of mitochondrial defects.

Fibroblasts derived from patients with defined mitochondrial disorders (mutations in the genes of subunits Complex I, SCO2, SURF1, MTATP6, SERAC1, TAZZ and tRNALeu) have been studied. Bioenergetic parameters, ROS production and the level of individual antioxidant enzymes have been estimated. Finally, the multiparameter statistical analysis has been performed.

Anomalies in the bioenergetic parameters, modification of the antioxidant enzymes levels as well as enhancement of intracellular ROS confirmed the occurrence of oxidative stress in the fibroblasts. Principal component analysis showed that individual defects were grouped in separate clusters. This indicates that mitochondrial defects in the patients’ fibroblasts are characterized by a unique profile of important parameters of cellular bioenergetics and ROS homeostasis as well as that the different molecular background has a unique impact on the mitochondrial and antioxidant defense system dysfunctional pattern.

This approach may open new possibility to use the proposed set of mitochondrial parameters and comparative analysis in the studies essential for distinguishing the molecular background of mitochondrial defect.


O2k-Network Lab: PL_Warsaw_Szewczyk A


Labels:

Stress:RONS; Oxidative Stress"RONS; Oxidative Stress" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property. 






Affiliations and author contributions

1 - Dept Pathology, The Children’s Memorial Health Institute, Warsaw, Poland;

2 - Dept Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland

Email: m.wieckowski@nencki.gov.pl


Supported by the Internal Projects of CMHI 125/2012.