Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search results

From Bioblast
Results 1 – 52 of 52
Advanced search

Search in namespaces:

  
  
  
  
  
  
  
  
  
  
  
  
  
  • |title=Massoz S, Cardol P, González-Halphen D, Remacle C (2017) Mitochondrial bioenergetic |authors=Massoz S, Cardol P, Gonzalez-Halphen D, Remacle C
    2 KB (211 words) - 06:35, 5 November 2023
  • ...Lane]] <u>Lane Nick</u> (2022) The alpha and omega of metabolism: why the Krebs cycle brings the earth to life and our own lives to an end. '''Bioblast 202 ...ir membrane potential according to glucose availability. This link between Krebs-cycle flux and membrane potential might point to the emergence of elementar
    3 KB (471 words) - 08:26, 28 July 2022
  • ...chmitt S, Mancilla IA, Meyer-Bender MF, Hanf M, Philippou-Massier J, Krebs S, Zischka H, Jae LT (2020) A pathway coordinated by DELE1 relays mitochondri ...chmitt S, Mancilla IA, Meyer-Bender MF, Hanf M, Philippou-Massier J, Krebs S, Zischka H, Jae LT
    2 KB (303 words) - 09:07, 16 August 2021
  • ...c molecules into the building blocks of life, and the reverse – the iconic Krebs cycle that sits at the heart of metabolism. This conflicted merry-go-round ...ooks'; this is the little blue book. Gives practical insights into how the Krebs cycle really works. Introduces the idea of the Q junction, where electrons
    2 KB (282 words) - 21:14, 10 July 2022
  • ...ess, Krebs cycle impairment, and a weakening of the connection between the Krebs cycle and glycolysis in the frontal cortex of animals receiving dexamethaso |pathways=N, S, NS, ROX
    2 KB (298 words) - 15:49, 13 March 2024
  • ...the implication of SDH in both the mitochondrial respiratory chain and the Krebs cycle. Nowadays, this theme is experiencing a real revival following the di ...living organisms, SDH has no cellular isoform, unlike most enzymes of the Krebs cycle, except citrate synthase and succinyl CoA ligase.
    2 KB (322 words) - 09:07, 16 April 2023
  • {{Template:Correction FADH2 and S-pathway}} ...t al (2011) shows oxidation by CII of FADH<sub>2</sub> from the TCA cycle (Krebs cycle), and paradoxically oxidation of FADH<sub>2</sub> by β-oxidation.
    3 KB (366 words) - 01:20, 31 October 2023
  • ...ibution of lipids in the bodies of parasites; and disturbances in the host's protein metabolism during parasitic infections. ...le fro anaerobic succinate production by reversal of some reactions of the Krebs cycle, couple to an auxiliary reaction, such as formation of oxyloacetic ac
    1 KB (190 words) - 17:51, 20 February 2022
  • |title=Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinog {{Template:Correction FADH2 and S-pathway}}
    2 KB (257 words) - 17:34, 5 October 2023
  • ...eschauer M, Gizatullina Z, Schulze A, Pritsch M, Knöppel C, Knape M, Zierz S, Gellerich FN (2006) Molecular and biochemical investigations in fumarase d ...schauer M, Gizatullina Z, Schulze A, Pritsch M, Knoeppel C, Knape M, Zierz S, Gellerich FN
    2 KB (306 words) - 15:19, 20 November 2018
  • ...f mitochondrial metabolism, which is driven by mutations in genes encoding Krebs cycle enzymes or by activation of hypoxia signaling. Present metabolic chan {{Template:Correction FADH2 and S-pathway}}
    2 KB (218 words) - 11:01, 16 September 2023
  • ..., Marechal X, Baccouch R, Modine T, Preau S, Zannis K, Marchetti P, Lancel S, Neviere R (2010) Stabilization of mitochondrial membrane potential prevent ..., Marechal X, Baccouch R, Modine T, Preau S, Zannis K, Marchetti P, Lancel S, Neviere R
    3 KB (339 words) - 11:49, 22 December 2020
  • |abstract=The tricarboxylic acid (TCA) cycle, otherwise known as the Krebs cycle, is a central metabolic pathway that performs the essential function {{Template:Correction FADH2 and S-pathway}}
    2 KB (227 words) - 21:54, 28 August 2023
  • ...lan B, Alhasan L, Grosser D, Ermer KJ, Nickel A, Kohlhaas M, Eberl H, Rebs S, Streckfuss-Bömeke K, Schmitz W, Rehling P, Thum T, Higuchi T, Rabinowitz ...s. Increased glutamate uptake facilitates anaplerotic replenishment of the Krebs cycle, sustaining energy production and antioxidative pathways. These data
    3 KB (398 words) - 17:47, 14 November 2023
  • Krebs cycle. Oxidation of fatty acylcarnitines therefore contributes to electrons to the ETS without involving the Krebs cycle whereas oxidation
    3 KB (438 words) - 16:16, 26 March 2018
  • |title=Bouwkamp CG, Afawi Z, Fattal-Valevski A, Krabbendam IE, Rivetti S, Masalha R, Quadri M, Breedveld GJ, Mandel H, Tailakh MA, Beverloo HB, Stev |authors=Bouwkamp CG, Afawi Z, Fattal-Valevski A, Krabbendam IE, Rivetti S, Masalha R, Quadri M, Breedveld GJ, Mandel H, Tailakh MA, Beverloo HB, Stev
    2 KB (277 words) - 14:28, 26 April 2018
  • ...ne decades is reviewed leaning towards the far greater role of Krebs cycle's canonical activity yielding succinate through α-ketoglutarate -> succinyl-
    2 KB (253 words) - 12:57, 2 August 2023
  • ...va.pdf|eco.nova Erich Gnaiger - Kopf der Ausgabe]] Ausgabe 15/Jänner 2017, S 10-11 (German) ...[Media:Echo Report.pdf|ECHO: Forschungsförderungen]] 19. Jg. November 2016 S 130-132(German)
    3 KB (409 words) - 05:02, 19 July 2022
  • ...ide adenosine triphosphate (ATP), used as a source of chemical energy. The Krebs cycle and fatty acid oxidation take place within mitochondria. Other metabo |pathways=N, S, ROX
    2 KB (277 words) - 15:41, 7 May 2020
  • ...oxygen removal by the electron transport system (ET-pathway). Glycolytic, Krebs cycle, and ET-pathway enzymes were also more abundant in tender meat. |pathways=F, N, S, NS, Other combinations, ROX
    2 KB (239 words) - 14:24, 13 November 2017
  • ...iquinone to ubiquinol, regenerated NAD+ keeping pyruvate dehydrogenase and Krebs cycle function. Hydrogenases are widespread in nature, they occur in bacter {{Template:Correction FADH2 and S-pathway}}
    2 KB (297 words) - 04:22, 15 October 2023
  • |title=Chowdhury SK, Zherebitskaya E, Smith DR, Akude E, Chattopadhyay S, Jolivalt CG, Calcutt NA, Fernyhough P (2010) Mitochondrial respiratory cha |authors=Chowdhury SK, Zherebitskaya E, Smith DR, Akude E, Chattopadhyay S, Jolivalt CG, Calcutt NA, Fernyhough P
    3 KB (346 words) - 19:10, 1 April 2018
  • ...c pathways, including oxidative phosphorylation, fatty acid oxidation, the Krebs cycle, glutamine and heme metabolism. Alterations of mitochondrial homeosta {{Template:Correction FADH2 and S-pathway}}
    2 KB (297 words) - 22:08, 22 October 2023
  • ...present. We show that Cx-1 of the ETC is able to accept electrons from the Krebs cycle, but enzyme assays that specifically measure electron flow to ubiquin {{Template:Correction FADH2 and S-pathway}}
    2 KB (308 words) - 23:11, 23 April 2023
  • {{Template:Correction FADH2 and S-pathway}} ...ysiol]]: Schematic picture explaining the mechanism of oxygen free radical(s) generation mediated by electron transport chain, the electrochemical gradi
    5 KB (754 words) - 03:39, 11 November 2023
  • |title=Pon J, Napoli E, Luckhart S, Giulivi C (2011) Mitochondrial NAD+-dependent malic enzyme from ''Anophele |authors=Pon J, Napoli E, Luckhart S, Giulivi C
    3 KB (370 words) - 10:05, 9 November 2016
  • ...focused on metabolic disorders and epilepsy, we investigated triheptanoin's effect on ischemic stroke. Mice were fed a triheptanoin-enriched diet for 1 |pathways=N, S, CIV, NS, ROX
    3 KB (351 words) - 15:58, 13 November 2017
  • ...heuer Sarah E, Hicks Mark, Jabbour Andrew, Dhital Kumud K, Macdonald Peter S ...yceryl trinitrate [GTN]/erythropoietin [EPO]/zoniporide [Z]) and perfused (Krebs-Henseleit buffer, 37°C Langendorff 30-min, working 30-min). Cardiac functi
    3 KB (381 words) - 14:29, 17 August 2021
  • |title=Wang H, Lu J, Kulkarni S, Zhang W, Gorka JE, Mandel JA, Goetzman ES, Prochownik EV (2019) Metabolic |authors=Wang Huabo, Lu J, Kulkarni S, Zhang W, Gorka JE, Mandel JA, Goetzman ES, Prochownik EV
    3 KB (397 words) - 18:52, 7 September 2023
  • ...eau D, Chevrollier A, Procaccio V (2022) Glutamate-induced deregulation of krebs cycle in mitochondrial encephalopathy lactic acidosis syndrome stroke-like
    3 KB (395 words) - 14:17, 22 September 2022
  • ...s energetics through “push” (activating metabolite flux and enzymes in the Krebs cycle to push the redox flux) and “pull” (acting directly on ATP syntha {{Template:Correction FADH2 and S-pathway}}
    2 KB (345 words) - 00:37, 18 December 2023
  • ...Petit B, Vaurs-Barriere C, Guéret-Gonthier C, Bonnet-Dupeyron MN, Fourcade S, Auwerx J, Boespflug-Tanguy O, Pujol A (2017) Oxidative stress and mitochon ...Petit B, Vaurs-Barriere C, Gueret-Gonthier C, Bonnet-Dupeyron MN, Fourcade S, Auwerx J, Boespflug-Tanguy O, Pujol A
    3 KB (433 words) - 14:59, 2 January 2019
  • ...al enzyme isocitrate lyase (bactericidal activity) and the inhibition of a Krebs cycle enzyme succinate dehydrogenase (SDH) in the host cells (which has bee ...m to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A.; 110:7820–5.
    4 KB (481 words) - 08:30, 8 January 2023
  • |title=Erdem A, Marin S, Pereira-Martins DA, Geugien M, Cunningham A, Pruis MG, Weinhäuser I, Gerd ...II, thereby driving high mitochondrial respiration activity linked to the Krebs cycle. While inhibition of ETC complex II enhances apoptosis in FLT3-ITD<su
    2 KB (312 words) - 15:10, 30 November 2022
  • ...lactate isomers in prostate cancer cells could account for anaplerosis of Krebs cycle intermediates in the case of L-LAC, and for energy production and exp #Passarella S, de Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A (2008) Mitochondria
    4 KB (573 words) - 11:23, 13 April 2015
  • |keywords=Ischemia, Krebs cycle, Mitochondrial complex II, Oxaloacetate, Succinate dehydrogenase |pathways=S
    3 KB (384 words) - 10:02, 24 September 2018
  • ...lung chemiluminescence (-62 +/- 12, -46 +/- 7, and -148 +/- 36 counts/0.1 s, respectively) and subsequently increased pulmonary artery pressure (+14 +/
    2 KB (362 words) - 13:46, 25 April 2022
  • ...the immune response. Accordingly, inhibitors of the glycolytic pathway and Krebs cycle reverted neuroinflammation (reducing IL-1β and S100B) and the change |pathways=N, S, NS, ROX
    3 KB (433 words) - 16:42, 7 November 2022
  • ...sterday's concepts in the arena of traditional journals. We can ''do today's job'' much better [5]. ...px|thumb|'''Figure 2. Odra Noel (2010)''': Hommage to pioneers I - Altmann's Bioblasts, ''MiPArt Gallery'' [4].]]
    7 KB (977 words) - 08:24, 28 July 2022
  • ...the bloodstream stage single mitochondrion is highly reduced lacking key Krebs cycle enzymes and traditional cytochrome mediated respiratory chain. Intere ...on of Tb2930 we observed a shift of the FoF1-ATPase complexes to the lower S-values on glycerol gradient, where the free F1-ATPase sediments, indicating
    4 KB (564 words) - 14:23, 26 March 2018
  • ...espiration, as well as on the involvement of SDH as a constitutive part of Krebs cycle, in the respiration with CI-linked substrate combinations, in mitocho |pathways=F, N, S, NS
    4 KB (587 words) - 13:46, 5 January 2023
  • ...the Prize in 1953 for the metabolic cycle that carries his name, Sir Hans Krebs [3,4]. This direct link between one of the most famous mitochondrial bioche ...ory rodents are metabolically morbid: Why it matters. Proc Natl Acad Sci U S A 107: 6127-6133.]]
    14 KB (1,966 words) - 09:13, 1 November 2018
  • ...Biol Chem) are explicitly acknowledged. Contribution to the European Union’s Horizon 2020 research and innovation program Grant 857394 ([[FAT4BRAIN]]). :::: '''#8''' Kunst C, Schmid S, Michalski M, Tümen D, Buttenschön J, Müller M, Gülow K (2023) The infl
    29 KB (3,663 words) - 08:48, 1 May 2024
  • ::::::General discussion - [[MiPArt 13 – MiP2014|'''MiPArt: Mitchell's dream''']] ...gungsapparat aber auch die Gedächtnisleistung einschränken, können auch zu Krebs führen und sind in geringer Konzentration dennoch für eine Vielzahl physi
    8 KB (1,049 words) - 10:32, 11 April 2022
  • |Marta Luna-Sánchez - CoQ deficiency: molecular and pathophysiology consequences |Matthias Elstner - Life is not a sprint, it's a marathon: the metabolic gene expression footprint of human muscle fibres
    14 KB (1,865 words) - 16:38, 30 June 2017
  • ...eux H, Jeoung NH, Lambrechts D, Bishop T, Lafuste P, Diez-Juan A, K Harten S, Van Noten P, De Bock K, Willam C, Tjwa M, Grosfeld A, Navet R, Moons L, Va # Boudina S, Sena S, O'Neill BT, Tathireddy P, Young ME, Abel ED (2005) Reduced mitochondrial o
    25 KB (3,492 words) - 06:44, 13 January 2021
  • ...x slip contribute significantly to mitochondrial respiration? In: Schuster S, Rigoulet M, Ouhabi R, Mazat J-P (eds) Modern Trends in Biothermokinetics. # [[Gnaiger 2000 Life in the Cold|Gnaiger E, Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Steurer W, Margreiter R (2000b) Mitochondria in th
    34 KB (4,820 words) - 04:08, 23 November 2021
  • ...al-time_OXPHOS_analysis |Real-time OXPHOS analysis]]'''. — Richard Altmann’s bioblasts are the systematic unit of bioenergetics and chemiosmotic couplin ...the error of comparing NADH in the N-pathway with FADH<sub>2</sub> in the S-pathway ― together with fumarate, FADH<sub>2</sub> is a product but not a
    89 KB (12,074 words) - 17:54, 6 May 2024
  • ...x slip contribute significantly to mitochondrial respiration? In: Schuster S, Rigoulet M, Ouhabi R, Mazat J-P (eds) Modern Trends in Biothermokinetics. :::# Gnaiger E, Kuznetsov AV, Schneeberger S, Seiler R, Brandacher G, Steurer W, Margreiter R (2000b) Mitochondria in th
    51 KB (7,005 words) - 04:36, 19 July 2022
  • 16:10 '''Perkhofer S''', Lass-Flörl C (Department für Hygiene, Mikrobiologie und * [[Perkhofer S|'''Perkhofer Susanne''']], Department für Hygiene, Mikrobiologie und Sozia
    43 KB (5,637 words) - 11:35, 23 January 2019
  • ...ibitor rotenone is widely used to develop experimental models of Parkinson’s disease, Gangly et al examined if rotenone is an inducer of ferroptosis. <b * Ganguly U, Bir A, Chakrabarti S (2022) Cytotoxicity of mitochondrial Complex I inhibitor rotenone: a comple
    87 KB (11,941 words) - 15:14, 16 November 2023
  • :::: '''1.4. Ref 50''' Balasubramaniam S, Yaplito-Lee J (2020) Riboflavin metabolism: role in mitochondrial function :::: '''1.9. Ref 55''' Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J (2020) Dihydroorotate dehydroge
    135 KB (18,142 words) - 13:29, 1 May 2024