MiP2013: Difference between revisions

From Bioblast
No edit summary
No edit summary
Line 16: Line 16:
| [[Walker JE|'''Nobel laureate Sir John Walker]]||MRC Mitochondrial Biology Unit, Cambridge, UK|| ''MiP2013 lecture on comparative mitochondrial physiology'' ||Keynote   
| [[Walker JE|'''Nobel laureate Sir John Walker]]||MRC Mitochondrial Biology Unit, Cambridge, UK|| ''MiP2013 lecture on comparative mitochondrial physiology'' ||Keynote   
|-
|-
|  [[Saltin B|'''Bengt Saltin''']]||Copenhagen Muscle Research Centre, DK||''Kjell Johansen lecture''||Keynote  
|  [[Saltin B|'''Saltin Bengt''']]||Copenhagen Muscle Research Centre, DK||''Kjell Johansen lecture''||Keynote  
|-
|-
|  [[Buck LT|'''Les Buck''']]||University of Toronto, CA||''Peter Hochachka lecture''||Keynote  
|  [[Buck LT|'''Buck Les''']]||University of Toronto, CA||''Peter Hochachka lecture''||Keynote  
|-
|-
| [[Amoedo ND|Nivea Días Amoedo]]||Federal University of Rio de Janeiro, BR||Comparative biochemistry of tumorigenesis: role of mitochondria||Oral  
| [[Amoedo ND]]||Federal University of Rio de Janeiro, BR||Comparative biochemistry of tumorigenesis: role of mitochondria||Oral  
|-
|-
| [[Arandarcikaite O|Odeta Arandarcikaite]]||Lithuanian University of Health Sciences, Kaunas, LT||The protective effect of NO against ischemia induced brain mitochondrial injury||Oral  
| [[Arandarcikaite O]]||Lithuanian University of Health Sciences, Kaunas, LT||The protective effect of NO against ischemia induced brain mitochondrial injury||Oral  
|-
|-
|  [[Bandmann O|Oliver Bandmann]]||Sheffield Institute for Translational Neuroscience, UK||''TigarB'' causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency|| Oral
|  [[Bandmann O]]||Sheffield Institute for Translational Neuroscience, UK||''TigarB'' causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency|| Oral
|-
|-
|  [[Beach A|Adam Beach]]||Concordia University, Montreal, CA||Lithocholic acid delays aging in yeast and exhibits an anti-tumor effect in human cells by altering mitochondrial composition, structure and function||Poster  
|  [[Beach A]]||Concordia University, Montreal, CA||Lithocholic acid delays aging in yeast and exhibits an anti-tumor effect in human cells by altering mitochondrial composition, structure and function||Poster  
|-
|-
|  [[Bir A|Aritri Bir]]||Education & Research IPGMER, Kolkata, IN||α-Synuclein mediated alterations in mitochondrial oxidative phosphorylation system: implications in the pathogenesis of Parkinson’s disease||Poster
|  [[Bir A]]||Education & Research IPGMER, Kolkata, IN||α-Synuclein mediated alterations in mitochondrial oxidative phosphorylation system: implications in the pathogenesis of Parkinson’s disease||Poster
|-
|-
|  [[Blier PU|Pierre Blier]]||Université du Québec à Rimouski, CA||Holding our breath in our modern world: are mitochondria keeping the pace with global changes?||Oral  
|  [[Blier PU]]||Université du Québec à Rimouski, CA||Holding our breath in our modern world: are mitochondria keeping the pace with global changes?||Oral  
|-
|-
|  [[Borutaite V|Vilma Borutaite]]||Kaunas University of Medicine, LT||Mitochondrial response to heart and brain ischemia||Oral  
|  [[Borutaite V]]||Kaunas University of Medicine, LT||Mitochondrial response to heart and brain ischemia||Oral  
|-
|-
|  [[Bouillaud F|Frédéric Bouillaud]]||Universite Paris Descartes, Paris, FR||Adaptation of colonocyte mitochondria to intense hydrogen sulfide exposure||Oral
|  [[Bouillaud F]]||Universite Paris Descartes, Paris, FR||Adaptation of colonocyte mitochondria to intense hydrogen sulfide exposure||Oral
|-
|-
|  [[Boushel RC|Robert Boushel]]||University of Copenhagen, Copenhagen, DK||O<sub>2</sub> delivery, diffusion and mitochondrial respiration components of VO<sub>2</sub> during exercise in health and disease||Oral
|  [[Boushel RC]]||University of Copenhagen, Copenhagen, DK||O<sub>2</sub> delivery, diffusion and mitochondrial respiration components of VO<sub>2</sub> during exercise in health and disease||Oral
|-
|-
|  [[Brandt T|Tobias Brandt]]||Max-Planck-Institute of Biophysics, Frankfurt a. M., DE||Structure and function of aged mouse mitochondria|| Oral
|  [[Brandt T]]||Max-Planck-Institute of Biophysics, Frankfurt a. M., DE||Structure and function of aged mouse mitochondria|| Oral
|-
|-
|  [[Calzia E|Enrico Calzia]]||Universitätsklinikum Ulm, DE||Studying mitochondrial effects of sulfide. Does the species matter?||Oral
|  [[Calzia E]]||Universitätsklinikum Ulm, DE||Studying mitochondrial effects of sulfide. Does the species matter?||Oral
|-
|-
|  [[Cavalcanti de Albuquerque JP|Joao Paulo Cavalcanti de Albuquerque]]||Universidade Federal do Rio de Janeiro, BR||Skeletal muscle mitochondrial function in ovariectomized rats: a time course study and the role of estrogen replacement||Poster   
|  [[Cavalcanti de Albuquerque JP]]||Universidade Federal do Rio de Janeiro, BR||Skeletal muscle mitochondrial function in ovariectomized rats: a time course study and the role of estrogen replacement||Poster   
|-
|-
|  [[Chicco AJ|Adam Chicco]]||Colorado State University, Fort Collins, US||Comparative muscle mitochondrial physiology of the northern elephant seal; Poster: Remodeling of skeletal muscle mitochondria in response to exercise training in taz shRNA mouse model of human Barth syndrome||Oral
|  [[Chicco AJ]]||Colorado State University, Fort Collins, US||Comparative muscle mitochondrial physiology of the northern elephant seal; Poster: Remodeling of skeletal muscle mitochondria in response to exercise training in taz shRNA mouse model of human Barth syndrome||Oral
|-
|-
|  [[Chung D|Dillon Chung]]||University of British Columbia, Vancouver, CA||The effect of low-temperature acclimation on mitochondrial function in the common killifish (''Fundulus heteroclitus''), a top-down elasticity analysis ||''see Patricia Schulte''  
|  [[Chung D]]||University of British Columbia, Vancouver, CA||The effect of low-temperature acclimation on mitochondrial function in the common killifish (''Fundulus heteroclitus''), a top-down elasticity analysis ||''see Patricia Schulte''  
|-
|-
|  [[Christen F|Felix Christen]]||Université du Québec à Rimouski, CA||Modulation in ROS production in arctic charr heart mitochondria: Is Astaxanthine only good for the pink color?||Poster  
|  [[Christen F]]||Université du Québec à Rimouski, CA||Modulation in ROS production in arctic charr heart mitochondria: Is Astaxanthine only good for the pink color?||Poster  
|-
|-
|  [[Darveau CA|Charles Darveau]]||University of Ottawa, CA||Diversity and evolution of mitochondrial metabolism: Proline as a metabolic reward for pollinators|| Oral
|  [[Darveau CA]]||University of Ottawa, CA||Diversity and evolution of mitochondrial metabolism: Proline as a metabolic reward for pollinators|| Oral
|-
|-
|  [[Dela F|Flemming Dela]]||University of Copenhagen, DK||Statins affects skeletal muscle mitochondrial respiration|| part-time
|  [[Dela F]]||University of Copenhagen, DK||Statins affects skeletal muscle mitochondrial respiration|| part-time
|-
|-
|  [[Dlaskova A|Andrea Dlaskova]]||Academy of Sciences of the Czech Rep., Prague, CZ||Distribution of nucleoids of mitochondrial DNA||Poster  
|  [[Dlaskova A]]||Academy of Sciences of the Czech Rep., Prague, CZ||Distribution of nucleoids of mitochondrial DNA||Poster  
|-
|-
|  [[Dungel P|Peter Dungel]]||Ludwig Boltzmann Institute, Vienna, AT||Iron-mediated injury of mitochondria is attenuated by nitrite|| Oral
|  [[Dungel P]]||Ludwig Boltzmann Institute, Vienna, AT||Iron-mediated injury of mitochondria is attenuated by nitrite|| Oral
|-
|-
|  [[Dzialowski_EM|Edward Dzialowski]]||University of North Texas, US||Mitochondria Function and the Development of Endothermy in the Precocial Pekin Duck ''(Anas pekin)''||Oral
|  [[Dzialowski_EM]]||University of North Texas, US||Mitochondria Function and the Development of Endothermy in the Precocial Pekin Duck ''(Anas pekin)''||Oral
|-
|-
|  [[Eira da Costa AC|Ana Carina Eira da Costa]]||University of Leicester, UK||''Drosophila Trap1'' protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson’s disease||Poster  
|  [[Eira da Costa AC]]||University of Leicester, UK||''Drosophila Trap1'' protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson’s disease||Poster  
|-
|-
|  [[Persson MF|Malou Friederich-Persson]]||Uppsala University, SE||Potassium controls rat mitochondria function; in vivo and in vitro considerations||Poster  
|  [[Persson MF]]||Uppsala University, SE||Potassium controls rat mitochondria function; in vivo and in vitro considerations||Poster  
|-
|-
|  [[Galina A|Antonio Galina]]||Federal University of Rio de Janeiro, BR||Effects of antitumor alkylating agent 3-bromopyruvate on energy transducing pathways in hepatoma HepG2, liver mitochondria and SERCA: Is There Any Role for Mitochondrial Hexokinase Activity||Oral
|  [[Galina A]]||Federal University of Rio de Janeiro, BR||Effects of antitumor alkylating agent 3-bromopyruvate on energy transducing pathways in hepatoma HepG2, liver mitochondria and SERCA: Is There Any Role for Mitochondrial Hexokinase Activity||Oral
|-
|-
|  [[Garcia-Rives G|Gerardo Garcia-Rives]]||Medical School, Tec de Monterrey, MX||Regulation of mitochondrial permeability transition by Sirt3-catalyzed cyclophilin D deacetylation and its relevance for ventricular dysfunction in metabolic syndrome||Poster
|  [[Garcia-Rives G]]||Medical School, Tec de Monterrey, MX||Regulation of mitochondrial permeability transition by Sirt3-catalyzed cyclophilin D deacetylation and its relevance for ventricular dysfunction in metabolic syndrome||Poster
|-
|-
|  [[Garcia-Roves PM|Pablo Garcia-Roves]]||Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) Hospital Clinic de Barcelona, ES||Mitochondrial respiration in different mouse tissues under patho-physiological states||Oral
|  [[Garcia-Roves PM]]||Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) Hospital Clinic de Barcelona, ES||Mitochondrial respiration in different mouse tissues under patho-physiological states||Oral
|-
|-
|  [[Gellerich FN|Frank Norbert Gellerich]]||Universitätsklinikum Magdeburg, DE||The mitochondrial gas pedal, a unique property of neurons exists also in heart and skeletal muscle but not in astrocytes. New evidences by in silico investigations and (patho-)physiological consequences|| Oral
|  [[Gellerich FN]]||Universitätsklinikum Magdeburg, DE||The mitochondrial gas pedal, a unique property of neurons exists also in heart and skeletal muscle but not in astrocytes. New evidences by in silico investigations and (patho-)physiological consequences|| Oral
|-
|-
|  [[Gizatullina Z|Zemfira Gizatullina]]||Universitätsklinikum Magdeburg, DE||The mitochondrial gas pedal, a unique property of neurons exists also in heart and skeletal muscle but not in astrocytes. New evidences by in silico investigations and (patho-)physiological consequences||''see Frank Gellerich''
|  [[Gizatullina Z]]||Universitätsklinikum Magdeburg, DE||The mitochondrial gas pedal, a unique property of neurons exists also in heart and skeletal muscle but not in astrocytes. New evidences by in silico investigations and (patho-)physiological consequences||''see Frank Gellerich''
|-
|-
|  [[Glick GD|Gary Glick]]||Lycera Corporation, Ann Arbor, MI, US|| ||   
|  [[Glick GD]]||Lycera Corporation, Ann Arbor, MI, US|| ||   
|-
|-
|  [[Gnaiger E|Erich Gnaiger]]||Medical University Innsbruck, AT||The Mitochondrial Physiology Map - [[MiPMap]]||Oral
|  [[Gnaiger E]]||Medical University Innsbruck, AT||The Mitochondrial Physiology Map - [[MiPMap]]||Oral
|-
|-
|  [[Gorbacheva O|Olga Gorbacheva]]||Institute of Theoretical and Experimental Biophysics RAS, Pushchino, RU||Cyclization of potassium in rat liver mitochondria in the functioning mitochondrial ATP-dependent potassium channel and its possible role in cardioprotection||Poster   
|  [[Gorbacheva O]]||Institute of Theoretical and Experimental Biophysics RAS, Pushchino, RU||Cyclization of potassium in rat liver mitochondria in the functioning mitochondrial ATP-dependent potassium channel and its possible role in cardioprotection||Poster   
|-
|-
|  [[Hansell P|Peter Hansell]]||Uppsala University, SE||Role of mitochondria function for the onset and progression of kidney disease||''see Fredrik Palm''
|  [[Hansell P]]||Uppsala University, SE||Role of mitochondria function for the onset and progression of kidney disease||''see Fredrik Palm''
|-
|-
|  [[Hand SC|Steven Hand]]||LSU, Baton Rouge, Lousiana, US||Defense against ATP depletion during the energy-limited state of diapause.||Oral
|  [[Hand SC]]||LSU, Baton Rouge, Lousiana, US||Defense against ATP depletion during the energy-limited state of diapause.||Oral
|-
|-
|  [[Hashimi H|Hassan Hashimi]]||Academy of Sciences of the Czech Rep., Ceske Budejovice, CZ||Ancestral function of Letm1 as determined in the evolutionary diverged ''Trypanosoma brucei''||Poster  
|  [[Hashimi H]]||Academy of Sciences of the Czech Rep., Ceske Budejovice, CZ||Ancestral function of Letm1 as determined in the evolutionary diverged ''Trypanosoma brucei''||Poster  
|-
|-
|  [[Heidler J|Juliana Heidler]]||JW-Goethe University, Frankfurt, DE|| Functional plasticity of interfibrillary mitochondria (IFM) as cardiac response mechanism to stress||Oral   
|  [[Heidler J]]||JW-Goethe University, Frankfurt, DE|| Functional plasticity of interfibrillary mitochondria (IFM) as cardiac response mechanism to stress||Oral   
|-
|-
|  [[Hendricks E|Eric Hendricks]]||Eastern Illinois University, Charleston, US||Bioenergetics of permeabilized and intact nerve cell terminals from ApoE deficient and wild type mice||Poster  
|  [[Hendricks E]]||Eastern Illinois University, Charleston, US||Bioenergetics of permeabilized and intact nerve cell terminals from ApoE deficient and wild type mice||Poster  
|-
|-
|  [[Hickey AJ|Anthony Hickey]]||University of Auckland, NZ||Mitochondria in a changing climate? The role of mitochondrial in hyperthermic heart failure in different fish species||Oral
|  [[Hickey AJ]]||University of Auckland, NZ||Mitochondria in a changing climate? The role of mitochondrial in hyperthermic heart failure in different fish species||Oral
|-
|-
|  [[Holloway GP|Graham Holloway]]||University of Guelph, CA|| ||''tentative''
|  [[Holloway GP]]||University of Guelph, CA|| ||''tentative''
|-
|-
|  [[Hoppel CL|Charles Hoppel]]||Cleveland, Ohio, US|| ||  
|  [[Hoppel CL]]||Cleveland, Ohio, US|| ||  
|-
|-
|  [[Irving BA|Brian Irving]]||Geisinger Health System, Danville, US||Sex differences in murine mitochondrial oxidative capacity following a 24 week high-fat diet ||Oral
|  [[Irving BA]]||Geisinger Health System, Danville, US||Sex differences in murine mitochondrial oxidative capacity following a 24 week high-fat diet ||Oral
|-
|-
|  [[Jacobs RA|Robert Jacobs]]||University of Zurich, CH||Improvements in exercise performance with high-intensity interval training are facilitated by an increase in skeletal muscle mitochondria content ||Oral [http://www.hypoxianet.com HypoxiaNet]
|  [[Jacobs RA]]||University of Zurich, CH||Improvements in exercise performance with high-intensity interval training are facilitated by an increase in skeletal muscle mitochondria content ||Oral [http://www.hypoxianet.com HypoxiaNet]
|-
|-
|  [[Jezek P|Petr Jezek]]||Academy of Sciences of the Czech Rep., Prague, CZ||Antioxidant synergy of mitochondrial uncoupling protein UCP2 and phospholipase iPLA<sub>2</sub>γ||Oral
|  [[Jezek P]]||Academy of Sciences of the Czech Rep., Prague, CZ||Antioxidant synergy of mitochondrial uncoupling protein UCP2 and phospholipase iPLA<sub>2</sub>γ||Oral
|-
|-
|  [[Koopman WJ|Werner Koopman]]||Radboud University Medical Centre, Nijmegen, NL||Developing novel treatment strategies for mitochondrial disease||Oral
|  [[Koopman WJ]]||Radboud University Medical Centre, Nijmegen, NL||Developing novel treatment strategies for mitochondrial disease||Oral
|-
|-
|  [[Kotwica A|Aleksandra Kotwica]]||University of Cambridge, UK||Mitochondrial respiration in heart and soleus of ob/ob mice||Oral
|  [[Kotwica A]]||University of Cambridge, UK||Mitochondrial respiration in heart and soleus of ob/ob mice||Oral
|-
|-
|  [[Kozlov A|Andrey Kozlov]]||Ludwig Boltzmann Institute, Vienna, AT||Regulatory role of mitochondrial ROS upon inflammation||Oral
|  [[Kozlov A]]||Ludwig Boltzmann Institute, Vienna, AT||Regulatory role of mitochondrial ROS upon inflammation||Oral
|-
|-
|  [[Korzeniewski B|Bernard Korzeniewski]]||Jagiellonian University, Krakow, PL||'Regulation of oxidative phosphorylation during work transitions in various tissues results from its kinetic properties||Oral
|  [[Korzeniewski B]]||Jagiellonian University, Krakow, PL||'Regulation of oxidative phosphorylation during work transitions in various tissues results from its kinetic properties||Oral
|-
|-
|  [[Krumschnabel G|Gerhard Krumschnabel]]||OROBOROS INSTRUMENTS, AT||||
|  [[Krumschnabel G]]||OROBOROS INSTRUMENTS, AT||||
|-
|-
|  [[Laner V|Verena Laner]]||OROBOROS INSTRUMENTS, Innsbruck, Austria|| ||''Local organizer''  
|  [[Laner V]]||OROBOROS INSTRUMENTS, Innsbruck, Austria|| ||''Local organizer''  
|-
|-
|  [[Larsen S|Steen Larsen]]||University of Copenhagen, DK||Skeletal muscle respiration after high intensity training||Oral
|  [[Larsen S]]||University of Copenhagen, DK||Skeletal muscle respiration after high intensity training||Oral
|-
|-
|  [[Larsen FJ|Filip J Larsen]]||Karolinska Institut, Stockholm, SE||Human mitochondria has a unique response to ischemia reperfusion injury compared to mitochondria from rat, mouse and pig||Oral
|  [[Larsen FJ]]||Karolinska Institut, Stockholm, SE||Human mitochondria has a unique response to ischemia reperfusion injury compared to mitochondria from rat, mouse and pig||Oral
|-
|-
|  [[Lee HK|Hong Kyu Lee]]||Eulji University College of Medicine, Seoul, KR||Building the mitochondrial medicine; need to define mtDNA variations and its function||Oral
|  [[Lee HK]]||Eulji University College of Medicine, Seoul, KR||Building the mitochondrial medicine; need to define mtDNA variations and its function||Oral
|-
|-
|  [[Lemieux H|Hélène Lemieux]]||University of Alberta, CA|| Early mitochondrial dysfunction associated with type 2 diabetes mellitus in the heart and skeletal muscle||Oral
|  [[Lemieux H]]||University of Alberta, CA|| Early mitochondrial dysfunction associated with type 2 diabetes mellitus in the heart and skeletal muscle||Oral
|-
|-
  |  [[Lindenberg K|Katrin Lindenberg]]||University of Ulm, DE|| Similar alterations in mitochondrial proteome of brain and skeletal muscle in two transgenic mouse models for Huntington's Disease||Poster
  |  [[Lindenberg K]]||University of Ulm, DE|| Similar alterations in mitochondrial proteome of brain and skeletal muscle in two transgenic mouse models for Huntington's Disease||Poster
|-
|-
|  [[Lundby C|Carsten Lundby]]||University of Zurich, CH||The effects of hypoxic training on aerobic performance in normoxia and moderate hypoxia: a randomized, double blind, placebo controlled study.||Oral [http://www.hypoxianet.com HypoxiaNet]  
|  [[Lundby C]]||University of Zurich, CH||The effects of hypoxic training on aerobic performance in normoxia and moderate hypoxia: a randomized, double blind, placebo controlled study.||Oral [http://www.hypoxianet.com HypoxiaNet]  
|-
|-
|  [[Lundby S|Stine Lundby]]||University of Zurich, CH|| ||
|  [[Lundby S]]||University of Zurich, CH|| ||
|-
|-
|  [[Makrecka M|Marina Makrecka]]||Riga Stradins University, Riga,LV|| The accumulation of long chain acyl-carnitines is a major cause of mitochondrial damage during ischemia||Poster  
|  [[Makrecka M]]||Riga Stradins University, Riga,LV|| The accumulation of long chain acyl-carnitines is a major cause of mitochondrial damage during ischemia||Poster  
|-
|-
|  [[Mark FC|Felix Mark]]||Alfred Wegener Institute for Polar and Marine Search, Bremerhaven, DE|| ||  
|  [[Mark FC]]||Alfred Wegener Institute for Polar and Marine Search, Bremerhaven, DE|| ||  
|-
|-
|  [[Matallo J|Jose Matallo]]||Universitätsklinikum Ulm, DE|| Effects of Mechanical Ventilation after Blunt Chest Trauma on Diaphragmatic Mitochondrial Respiration in Chronically Cigarette Smoke Exposed Mice; A Clinically Relevant Model?||Poster  
|  [[Matallo J]]||Universitätsklinikum Ulm, DE|| Effects of Mechanical Ventilation after Blunt Chest Trauma on Diaphragmatic Mitochondrial Respiration in Chronically Cigarette Smoke Exposed Mice; A Clinically Relevant Model?||Poster  
|-
|-
|  [[Menze MA|Michael Menze]]||Eastern Illinois University, Charleston, US||Group1 LEA protein ameliorates inhibition of mitochondrial respiration in Drosophila melanogaster Kc167 cells and isolated mitochondria||Oral
|  [[Menze MA]]||Eastern Illinois University, Charleston, US||Group1 LEA protein ameliorates inhibition of mitochondrial respiration in Drosophila melanogaster Kc167 cells and isolated mitochondria||Oral
|-
|-
|  [[Muller AP|Alexandre Pastoris Muller]]||Universidade Federal do Rio Grande do Sul, Porto Alegre, BR||Insulin prevents mitochondrial generation of H<sub>2</sub>O<sub>2</sub> in rat brain ||Poster  
|  [[Muller AP]]||Universidade Federal do Rio Grande do Sul, Porto Alegre, BR||Insulin prevents mitochondrial generation of H<sub>2</sub>O<sub>2</sub> in rat brain ||Poster  
|-
|-
|  [[Munro D|Daniel Munro]]||Université du Québec à Rimouski, CA||Mitochondrial membrane of the longest-lived metazoan (''A.islandica'') are lipoxidation-resistant||Oral
|  [[Munro D]]||Université du Québec à Rimouski, CA||Mitochondrial membrane of the longest-lived metazoan (''A.islandica'') are lipoxidation-resistant||Oral
|-
|-
|  [[Oliveira HC|Helena Oliveira]]||Univ. Estadual de Campinas, Sao Paulo, BR|| Intermittent fasting improves oxidative stress but not metabolic disturbances and atherosclerosis in hypercholesterolemic mice||Poster
|  [[Oliveira HC]]||Univ. Estadual de Campinas, Sao Paulo, BR|| Intermittent fasting improves oxidative stress but not metabolic disturbances and atherosclerosis in hypercholesterolemic mice||Poster
|-
|-
|  [[Oliveira MF|Marcus Oliveira]]||Universidade Federal do Rio de Janeiro, BR|| Comparative mitochondrial physiology in blood feeding insect vectors and parasites||Oral
|  [[Oliveira MF]]||Universidade Federal do Rio de Janeiro, BR|| Comparative mitochondrial physiology in blood feeding insect vectors and parasites||Oral
|-
|-
|  [[Olsen RE|Rolf Erik Olsen]]|| Institute of Marine Research Matre, Matredal, NO|| Comparative study of respiartion in Atlantic salmon (''Salmo salar'', L.) cells and mitochondria from blood, heart, liver, muscle and brain|| ''see Erik Slinde''
|  [[Olsen RE]]|| Institute of Marine Research Matre, Matredal, NO|| Comparative study of respiartion in Atlantic salmon (''Salmo salar'', L.) cells and mitochondria from blood, heart, liver, muscle and brain|| ''see Erik Slinde''
|-
|-
|  [[Paier Pourani J|Jamile Paier-Pourani]]||L. Boltzmann Institute für experimentelle und klinische Traumatologie, Vienna, AT||Feed forward iNOS-mitochondrial ROS loop in Hepatocytes. ||Oral  
|  [[Paier Pourani J]]||L. Boltzmann Institute für experimentelle und klinische Traumatologie, Vienna, AT||Feed forward iNOS-mitochondrial ROS loop in Hepatocytes. ||Oral  
|-
|-
|  [[Pajuelo D| David Pajuelo-Reguera ]]||Academy of Sciences of the Czech Rep., Prague, CZ||Some mitophagy markers in Liver and Skeletal Muscle in Goto Kakizaki rats||Poster
|  [[Pajuelo D]]||Academy of Sciences of the Czech Rep., Prague, CZ||Some mitophagy markers in Liver and Skeletal Muscle in Goto Kakizaki rats||Poster
|-
|-
|  [[Palm F|Fredrik Palm]]||Uppsala University, SE||Role of mitochondria function for the onset and progression of kidney disease.||Oral
|  [[Palm F]]||Uppsala University, SE||Role of mitochondria function for the onset and progression of kidney disease.||Oral
|-
|-
|  [[Pesta D|Dominik Pesta]]||Yale University School of Medicine, US||||
|  [[Pesta D]]||Yale University School of Medicine, US||||
|-
|-
|  [[Pinkert C|Carl Pinkert]]||Auburn University, Alabama, US|| Murine Modeling of Human Mitochondrial Disease Pathogenesis||Poster
|  [[Pinkert C]]||Auburn University, Alabama, US|| Murine Modeling of Human Mitochondrial Disease Pathogenesis||Poster
|-
|-
|  [[Persson P|Patrik Persson]]||Uppsala University, SE||The effects of Angiotensin II on mitochondrial respiration; a role of normoglycemia versus hyperglycemia||Poster  
|  [[Persson P]]||Uppsala University, SE||The effects of Angiotensin II on mitochondrial respiration; a role of normoglycemia versus hyperglycemia||Poster  
|-
|-
|  [[Pichaud N|Nicolas Pichaud]]||Université du Québec à Rimouski, CA||Importance of mitochondrial haplotypes in the expression of metabolic phenotypes under different conditions||Oral
|  [[Pichaud N]]||Université du Québec à Rimouski, CA||Importance of mitochondrial haplotypes in the expression of metabolic phenotypes under different conditions||Oral
|-
|-
|  [[Plecita-Hlavata L|Lydie Plecita-Hlavata]]||Academy of Sciences of the Czech Rep., Prague, CZ||Mitochondrial network and cristae remodeling upon hypoxia||Oral  
|  [[Plecita-Hlavata L]]||Academy of Sciences of the Czech Rep., Prague, CZ||Mitochondrial network and cristae remodeling upon hypoxia||Oral  
|-
|-
|  [[Quistorff B| Björn Quistorff]]||University of Copenhagen, SE|| With type 2 diabetes mitochondrial dysfunction develops earlier in liver than in rat skeletal muscle.||Oral
|  [[Quistorff B]]||University of Copenhagen, SE|| With type 2 diabetes mitochondrial dysfunction develops earlier in liver than in rat skeletal muscle.||Oral
|-
|-
|  [[Rodrigues MF|Mariana Rodrigues]]||Federal University of Rio de Janeiro, BR|| Studies of Bioenergetics Alterations in Breast Cancer Lines Induced by Histone desacetylase inhibitors||Poster
|  [[Rodrigues MF]]||Federal University of Rio de Janeiro, BR|| Studies of Bioenergetics Alterations in Breast Cancer Lines Induced by Histone desacetylase inhibitors||Poster
|-
|-
|  [[Salin K|Karine Salin]]||University of Glasgow, UK||Mitochondrial functioning, a proximate mechanism underlying the pace of life?||Poster
|  [[Salin K]]||University of Glasgow, UK||Mitochondrial functioning, a proximate mechanism underlying the pace of life?||Poster
|-
|-
|  [[Schiffer TA|Tomas Schiffer]]||Karolinska Institute, Stockholm, SE||Dietary Inorganic Nitrate Reduces Basal Metabolic Rate in Man||Poster
|  [[Schiffer TA]]||Karolinska Institute, Stockholm, SE||Dietary Inorganic Nitrate Reduces Basal Metabolic Rate in Man||Poster
|-
|-
|  [[Schulte P|Patricia Schulte]]||University of British Columbia, Vancouver, CA||The effect of low-temperature acclimation on mitochondrial function in the common killifish (''Fundulus heteroclitus''), a top-down elasticity analysis||Oral   
|  [[Schulte P]]||University of British Columbia, Vancouver, CA||The effect of low-temperature acclimation on mitochondrial function in the common killifish (''Fundulus heteroclitus''), a top-down elasticity analysis||Oral   
|-
|-
|  [[Scott GR|Graham Scott]]||McMaster University, Hamilton, CA||||
|  [[Scott GR]]||McMaster University, Hamilton, CA||||
|-
|-
|  [[Severin F|Fedor Severin]]||Moscow State University, RU||Mitochondrially-encoded protein Var1 promotes loss of respiratory function in Saccharomyces cerevisiae under stressful conditions||Poster
|  [[Severin F]]||Moscow State University, RU||Mitochondrially-encoded protein Var1 promotes loss of respiratory function in Saccharomyces cerevisiae under stressful conditions||Poster
|-
|-
|  [[Shabalina IG|Irina Shabalina]]||Stockholm University, Stockholm, SE|| Comparative study of brown and white adipose tissue mitochondria in mice upon cold acclimation||Oral
|  [[Shabalina IG]]||Stockholm University, Stockholm, SE|| Comparative study of brown and white adipose tissue mitochondria in mice upon cold acclimation||Oral
|-
|-
|  [[Shigaeva M|Maria Shigaeva]]||Insitute of Theoretical and Experimental Biophysics RAS, Pushchino, RU||The role of mitochondrial ATP-dependent potassium channel in the adaptation of organism to stress||Poster
|  [[Shigaeva M]]||Insitute of Theoretical and Experimental Biophysics RAS, Pushchino, RU||The role of mitochondrial ATP-dependent potassium channel in the adaptation of organism to stress||Poster
|-
|-
|  [[Silva Platas C|Christian Silva Platas]]||Medical School, Tec de Monterrey, MX||Modulation of Ca<sup>2+</sup> mitochondrial transport by sorcin||Poster
|  [[Silva Platas C]]||Medical School, Tec de Monterrey, MX||Modulation of Ca<sup>2+</sup> mitochondrial transport by sorcin||Poster
|-
|-
|  [[Skulachev VP|Vladimir Skulachev]]||Moscow State University, RU||SkQ1, the first tool to treat ROS-induced mitochondrial pathologies, which is available in drugstores||Oral
|  [[Skulachev VP]]||Moscow State University, RU||SkQ1, the first tool to treat ROS-induced mitochondrial pathologies, which is available in drugstores||Oral
|-
|-
| [[Slinde E|Erik Slinde]]||University of Life Science, As, NO|| Comparative study of respiartion in Atlantic salmon (''Salmo salar'', L.) cells and mitochondria from blood, heart, liver, muscle and brain||Poster
| [[Slinde E]]||University of Life Science, As, NO|| Comparative study of respiartion in Atlantic salmon (''Salmo salar'', L.) cells and mitochondria from blood, heart, liver, muscle and brain||Poster
|-
|-
|  [[Sparks L|Lauren Sparks]] ||Burnham Institute for Medical Research, Orlando, US|| ||  
|  [[Sparks L]] ||Burnham Institute for Medical Research, Orlando, US|| ||  
|-
|-
|  [[Sonkar VK|Vinkay Sonkar]] ||Institute of Medical Sciences, Banaras Hindu University, Vanarasi,IN|| ||  
|  [[Sonkar VK]] ||Institute of Medical Sciences, Banaras Hindu University, Vanarasi,IN|| ||  
|-
|-
|  [[Staples J|James Staples]]||University of Western Ontario, London, CA|| Mechanisms of mitochondrial metabolic depression in hibernation||Oral
|  [[Staples J]]||University of Western Ontario, London, CA|| Mechanisms of mitochondrial metabolic depression in hibernation||Oral
|-
|-
|  [[Subrtova K|Karolina Subrtova]]||Biology Centre, ASCR, Ceske Budejovice, CZ|| Hypothetical trypanosoma protein helps to anchor the F<sub>1</sub>-ATPase moiety to the mitochondrial membrane ||Oral  
|  [[Subrtova K]]||Biology Centre, ASCR, Ceske Budejovice, CZ|| Hypothetical trypanosoma protein helps to anchor the F<sub>1</sub>-ATPase moiety to the mitochondrial membrane ||Oral  
|-
|-
|  [[Szibor M|Marten Szibor]]||University of Helsinki, FI|| Expression of Ciona intestinalis alternative oxidase (AOX) in mouse ||Oral
|  [[Szibor M]]||University of Helsinki, FI|| Expression of Ciona intestinalis alternative oxidase (AOX) in mouse ||Oral
|-
|-
|  [[Thompson E|Elisabeth Thompson]]||OROBOROS INSTRUMENTS, AT||||
|  [[Thompson E]]||OROBOROS INSTRUMENTS, AT||||
|-
|-
|  [[Tepp K|Kersti Tepp]]||National Institute of Chemical Physics and Biophysics, Tallin, EE|| Bioenergetic aspects of postnatal development of cardiac cells: formation of structure-function relationship||Oral  
|  [[Tepp K]]||National Institute of Chemical Physics and Biophysics, Tallin, EE|| Bioenergetic aspects of postnatal development of cardiac cells: formation of structure-function relationship||Oral  
|-
|-
|  [[Tretter L|Laszlo Tretter]]||Semmelweis University, Budapest, HU||The effects of methylmalonic acid on alpha-ketoglutarate supported oxidation in isolated brain, heart and liver mitochondria||Oral
|  [[Tretter L]]||Semmelweis University, Budapest, HU||The effects of methylmalonic acid on alpha-ketoglutarate supported oxidation in isolated brain, heart and liver mitochondria||Oral
|-
|-
|  [[Vercesi AE|Anibal Vercesi]]||State University of Campinas, BR||Mitochondrial calcium transport in animal, plant and trypanosomes||Oral
|  [[Vercesi AE]]||State University of Campinas, BR||Mitochondrial calcium transport in animal, plant and trypanosomes||Oral
|-
|-
|  [[Volska K|Kristine Volska]] ||Riga Stradins University, Riga, LV|| The inhibitor of L-carnitine biosynthesis protects brain mitochondria against anoxia-reoxygenation injury.|| Poster
|  [[Volska K]] ||Riga Stradins University, Riga, LV|| The inhibitor of L-carnitine biosynthesis protects brain mitochondria against anoxia-reoxygenation injury.|| Poster
|-
|-
|  [[Votion DM|Dominique Votion]]||University of Liège, BE||The challenge of understanding myopathies in horses using permeabilized and cultured equine muscle cells||Oral
|  [[Votion DM]]||University of Liège, BE||The challenge of understanding myopathies in horses using permeabilized and cultured equine muscle cells||Oral
|-
|-
|  [[Wieckowski MR|Mariusz Wieckowski]]||Nencki Institute of Experimental Biology, Warsaw, PL||Mitochondrial parameters and ROS production can be used to differentiate mitochondrial defects in fibroblasts from patients with mitochondrial defects||Oral
|  [[Wieckowski MR]]||Nencki Institute of Experimental Biology, Warsaw, PL||Mitochondrial parameters and ROS production can be used to differentiate mitochondrial defects in fibroblasts from patients with mitochondrial defects||Oral
|-
|-
|  [[Wojtala A|Aleksandra Wojtala]]||Nencki Institute of Experimental Biology, Warsaw, PL||Comparative studies of reactive oxygen species production and the level of antioxidant defense system in the fibroblasts derived from patients with defined mitochondrial disorders||Oral
|  [[Wojtala A]]||Nencki Institute of Experimental Biology, Warsaw, PL||Comparative studies of reactive oxygen species production and the level of antioxidant defense system in the fibroblasts derived from patients with defined mitochondrial disorders||Oral
|-
|-
|  [[Wright L|Lauren Wright]]||Dipartimento di Scienze Biomediche, Padova, IT||Calcium regulation of metabolism in adipocytes||Oral
|  [[Wright L]]||Dipartimento di Scienze Biomediche, Padova, IT||Calcium regulation of metabolism in adipocytes||Oral
|-
|-
|  [[Zelenka J|Jaroslav Zelenka]]||Academy of Sciences, Prague, CZ||Response of cancer cells to mitochondrial DNA damage; Poster: Reverse carboxylation glutaminolysis in breast cancer cells||Poster
|  [[Zelenka J]]||Academy of Sciences, Prague, CZ||Response of cancer cells to mitochondrial DNA damage; Poster: Reverse carboxylation glutaminolysis in breast cancer cells||Poster
|-
|-
|}
|}

Revision as of 15:53, 6 July 2013

9th MiPconference - MiP2013: Comparative Mitochondrial Physiology

Obergurgl, Tyrol, Austria. 2013-Sep-23 to 27

Participants and titles of presentations - max. 124 participants

Presentations have to be held according to the MiPtradition 10+5 min.

Work in progress
Name Institution Title Presentation
Nobel laureate Sir John Walker MRC Mitochondrial Biology Unit, Cambridge, UK MiP2013 lecture on comparative mitochondrial physiology Keynote
Saltin Bengt Copenhagen Muscle Research Centre, DK Kjell Johansen lecture Keynote
Buck Les University of Toronto, CA Peter Hochachka lecture Keynote
Amoedo ND Federal University of Rio de Janeiro, BR Comparative biochemistry of tumorigenesis: role of mitochondria Oral
Arandarcikaite O Lithuanian University of Health Sciences, Kaunas, LT The protective effect of NO against ischemia induced brain mitochondrial injury Oral
Bandmann O Sheffield Institute for Translational Neuroscience, UK TigarB causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency Oral
Beach A Concordia University, Montreal, CA Lithocholic acid delays aging in yeast and exhibits an anti-tumor effect in human cells by altering mitochondrial composition, structure and function Poster
Bir A Education & Research IPGMER, Kolkata, IN α-Synuclein mediated alterations in mitochondrial oxidative phosphorylation system: implications in the pathogenesis of Parkinson’s disease Poster
Blier PU Université du Québec à Rimouski, CA Holding our breath in our modern world: are mitochondria keeping the pace with global changes? Oral
Borutaite V Kaunas University of Medicine, LT Mitochondrial response to heart and brain ischemia Oral
Bouillaud F Universite Paris Descartes, Paris, FR Adaptation of colonocyte mitochondria to intense hydrogen sulfide exposure Oral
Boushel RC University of Copenhagen, Copenhagen, DK O2 delivery, diffusion and mitochondrial respiration components of VO2 during exercise in health and disease Oral
Brandt T Max-Planck-Institute of Biophysics, Frankfurt a. M., DE Structure and function of aged mouse mitochondria Oral
Calzia E Universitätsklinikum Ulm, DE Studying mitochondrial effects of sulfide. Does the species matter? Oral
Cavalcanti de Albuquerque JP Universidade Federal do Rio de Janeiro, BR Skeletal muscle mitochondrial function in ovariectomized rats: a time course study and the role of estrogen replacement Poster
Chicco AJ Colorado State University, Fort Collins, US Comparative muscle mitochondrial physiology of the northern elephant seal; Poster: Remodeling of skeletal muscle mitochondria in response to exercise training in taz shRNA mouse model of human Barth syndrome Oral
Chung D University of British Columbia, Vancouver, CA The effect of low-temperature acclimation on mitochondrial function in the common killifish (Fundulus heteroclitus), a top-down elasticity analysis see Patricia Schulte
Christen F Université du Québec à Rimouski, CA Modulation in ROS production in arctic charr heart mitochondria: Is Astaxanthine only good for the pink color? Poster
Darveau CA University of Ottawa, CA Diversity and evolution of mitochondrial metabolism: Proline as a metabolic reward for pollinators Oral
Dela F University of Copenhagen, DK Statins affects skeletal muscle mitochondrial respiration part-time
Dlaskova A Academy of Sciences of the Czech Rep., Prague, CZ Distribution of nucleoids of mitochondrial DNA Poster
Dungel P Ludwig Boltzmann Institute, Vienna, AT Iron-mediated injury of mitochondria is attenuated by nitrite Oral
Dzialowski_EM University of North Texas, US Mitochondria Function and the Development of Endothermy in the Precocial Pekin Duck (Anas pekin) Oral
Eira da Costa AC University of Leicester, UK Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson’s disease Poster
Persson MF Uppsala University, SE Potassium controls rat mitochondria function; in vivo and in vitro considerations Poster
Galina A Federal University of Rio de Janeiro, BR Effects of antitumor alkylating agent 3-bromopyruvate on energy transducing pathways in hepatoma HepG2, liver mitochondria and SERCA: Is There Any Role for Mitochondrial Hexokinase Activity Oral
Garcia-Rives G Medical School, Tec de Monterrey, MX Regulation of mitochondrial permeability transition by Sirt3-catalyzed cyclophilin D deacetylation and its relevance for ventricular dysfunction in metabolic syndrome Poster
Garcia-Roves PM Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS) Hospital Clinic de Barcelona, ES Mitochondrial respiration in different mouse tissues under patho-physiological states Oral
Gellerich FN Universitätsklinikum Magdeburg, DE The mitochondrial gas pedal, a unique property of neurons exists also in heart and skeletal muscle but not in astrocytes. New evidences by in silico investigations and (patho-)physiological consequences Oral
Gizatullina Z Universitätsklinikum Magdeburg, DE The mitochondrial gas pedal, a unique property of neurons exists also in heart and skeletal muscle but not in astrocytes. New evidences by in silico investigations and (patho-)physiological consequences see Frank Gellerich
Glick GD Lycera Corporation, Ann Arbor, MI, US
Gnaiger E Medical University Innsbruck, AT The Mitochondrial Physiology Map - MiPMap Oral
Gorbacheva O Institute of Theoretical and Experimental Biophysics RAS, Pushchino, RU Cyclization of potassium in rat liver mitochondria in the functioning mitochondrial ATP-dependent potassium channel and its possible role in cardioprotection Poster
Hansell P Uppsala University, SE Role of mitochondria function for the onset and progression of kidney disease see Fredrik Palm
Hand SC LSU, Baton Rouge, Lousiana, US Defense against ATP depletion during the energy-limited state of diapause. Oral
Hashimi H Academy of Sciences of the Czech Rep., Ceske Budejovice, CZ Ancestral function of Letm1 as determined in the evolutionary diverged Trypanosoma brucei Poster
Heidler J JW-Goethe University, Frankfurt, DE Functional plasticity of interfibrillary mitochondria (IFM) as cardiac response mechanism to stress Oral
Hendricks E Eastern Illinois University, Charleston, US Bioenergetics of permeabilized and intact nerve cell terminals from ApoE deficient and wild type mice Poster
Hickey AJ University of Auckland, NZ Mitochondria in a changing climate? The role of mitochondrial in hyperthermic heart failure in different fish species Oral
Holloway GP University of Guelph, CA tentative
Hoppel CL Cleveland, Ohio, US
Irving BA Geisinger Health System, Danville, US Sex differences in murine mitochondrial oxidative capacity following a 24 week high-fat diet Oral
Jacobs RA University of Zurich, CH Improvements in exercise performance with high-intensity interval training are facilitated by an increase in skeletal muscle mitochondria content Oral HypoxiaNet
Jezek P Academy of Sciences of the Czech Rep., Prague, CZ Antioxidant synergy of mitochondrial uncoupling protein UCP2 and phospholipase iPLA2γ Oral
Koopman WJ Radboud University Medical Centre, Nijmegen, NL Developing novel treatment strategies for mitochondrial disease Oral
Kotwica A University of Cambridge, UK Mitochondrial respiration in heart and soleus of ob/ob mice Oral
Kozlov A Ludwig Boltzmann Institute, Vienna, AT Regulatory role of mitochondrial ROS upon inflammation Oral
Korzeniewski B Jagiellonian University, Krakow, PL 'Regulation of oxidative phosphorylation during work transitions in various tissues results from its kinetic properties Oral
Krumschnabel G OROBOROS INSTRUMENTS, AT
Laner V OROBOROS INSTRUMENTS, Innsbruck, Austria Local organizer
Larsen S University of Copenhagen, DK Skeletal muscle respiration after high intensity training Oral
Larsen FJ Karolinska Institut, Stockholm, SE Human mitochondria has a unique response to ischemia reperfusion injury compared to mitochondria from rat, mouse and pig Oral
Lee HK Eulji University College of Medicine, Seoul, KR Building the mitochondrial medicine; need to define mtDNA variations and its function Oral
Lemieux H University of Alberta, CA Early mitochondrial dysfunction associated with type 2 diabetes mellitus in the heart and skeletal muscle Oral
Lindenberg K University of Ulm, DE Similar alterations in mitochondrial proteome of brain and skeletal muscle in two transgenic mouse models for Huntington's Disease Poster
Lundby C University of Zurich, CH The effects of hypoxic training on aerobic performance in normoxia and moderate hypoxia: a randomized, double blind, placebo controlled study. Oral HypoxiaNet
Lundby S University of Zurich, CH
Makrecka M Riga Stradins University, Riga,LV The accumulation of long chain acyl-carnitines is a major cause of mitochondrial damage during ischemia Poster
Mark FC Alfred Wegener Institute for Polar and Marine Search, Bremerhaven, DE
Matallo J Universitätsklinikum Ulm, DE Effects of Mechanical Ventilation after Blunt Chest Trauma on Diaphragmatic Mitochondrial Respiration in Chronically Cigarette Smoke Exposed Mice; A Clinically Relevant Model? Poster
Menze MA Eastern Illinois University, Charleston, US Group1 LEA protein ameliorates inhibition of mitochondrial respiration in Drosophila melanogaster Kc167 cells and isolated mitochondria Oral
Muller AP Universidade Federal do Rio Grande do Sul, Porto Alegre, BR Insulin prevents mitochondrial generation of H2O2 in rat brain Poster
Munro D Université du Québec à Rimouski, CA Mitochondrial membrane of the longest-lived metazoan (A.islandica) are lipoxidation-resistant Oral
Oliveira HC Univ. Estadual de Campinas, Sao Paulo, BR Intermittent fasting improves oxidative stress but not metabolic disturbances and atherosclerosis in hypercholesterolemic mice Poster
Oliveira MF Universidade Federal do Rio de Janeiro, BR Comparative mitochondrial physiology in blood feeding insect vectors and parasites Oral
Olsen RE Institute of Marine Research Matre, Matredal, NO Comparative study of respiartion in Atlantic salmon (Salmo salar, L.) cells and mitochondria from blood, heart, liver, muscle and brain see Erik Slinde
Paier Pourani J L. Boltzmann Institute für experimentelle und klinische Traumatologie, Vienna, AT Feed forward iNOS-mitochondrial ROS loop in Hepatocytes. Oral
Pajuelo D Academy of Sciences of the Czech Rep., Prague, CZ Some mitophagy markers in Liver and Skeletal Muscle in Goto Kakizaki rats Poster
Palm F Uppsala University, SE Role of mitochondria function for the onset and progression of kidney disease. Oral
Pesta D Yale University School of Medicine, US
Pinkert C Auburn University, Alabama, US Murine Modeling of Human Mitochondrial Disease Pathogenesis Poster
Persson P Uppsala University, SE The effects of Angiotensin II on mitochondrial respiration; a role of normoglycemia versus hyperglycemia Poster
Pichaud N Université du Québec à Rimouski, CA Importance of mitochondrial haplotypes in the expression of metabolic phenotypes under different conditions Oral
Plecita-Hlavata L Academy of Sciences of the Czech Rep., Prague, CZ Mitochondrial network and cristae remodeling upon hypoxia Oral
Quistorff B University of Copenhagen, SE With type 2 diabetes mitochondrial dysfunction develops earlier in liver than in rat skeletal muscle. Oral
Rodrigues MF Federal University of Rio de Janeiro, BR Studies of Bioenergetics Alterations in Breast Cancer Lines Induced by Histone desacetylase inhibitors Poster
Salin K University of Glasgow, UK Mitochondrial functioning, a proximate mechanism underlying the pace of life? Poster
Schiffer TA Karolinska Institute, Stockholm, SE Dietary Inorganic Nitrate Reduces Basal Metabolic Rate in Man Poster
Schulte P University of British Columbia, Vancouver, CA The effect of low-temperature acclimation on mitochondrial function in the common killifish (Fundulus heteroclitus), a top-down elasticity analysis Oral
Scott GR McMaster University, Hamilton, CA
Severin F Moscow State University, RU Mitochondrially-encoded protein Var1 promotes loss of respiratory function in Saccharomyces cerevisiae under stressful conditions Poster
Shabalina IG Stockholm University, Stockholm, SE Comparative study of brown and white adipose tissue mitochondria in mice upon cold acclimation Oral
Shigaeva M Insitute of Theoretical and Experimental Biophysics RAS, Pushchino, RU The role of mitochondrial ATP-dependent potassium channel in the adaptation of organism to stress Poster
Silva Platas C Medical School, Tec de Monterrey, MX Modulation of Ca2+ mitochondrial transport by sorcin Poster
Skulachev VP Moscow State University, RU SkQ1, the first tool to treat ROS-induced mitochondrial pathologies, which is available in drugstores Oral
Slinde E University of Life Science, As, NO Comparative study of respiartion in Atlantic salmon (Salmo salar, L.) cells and mitochondria from blood, heart, liver, muscle and brain Poster
Sparks L Burnham Institute for Medical Research, Orlando, US
Sonkar VK Institute of Medical Sciences, Banaras Hindu University, Vanarasi,IN
Staples J University of Western Ontario, London, CA Mechanisms of mitochondrial metabolic depression in hibernation Oral
Subrtova K Biology Centre, ASCR, Ceske Budejovice, CZ Hypothetical trypanosoma protein helps to anchor the F1-ATPase moiety to the mitochondrial membrane Oral
Szibor M University of Helsinki, FI Expression of Ciona intestinalis alternative oxidase (AOX) in mouse Oral
Thompson E OROBOROS INSTRUMENTS, AT
Tepp K National Institute of Chemical Physics and Biophysics, Tallin, EE Bioenergetic aspects of postnatal development of cardiac cells: formation of structure-function relationship Oral
Tretter L Semmelweis University, Budapest, HU The effects of methylmalonic acid on alpha-ketoglutarate supported oxidation in isolated brain, heart and liver mitochondria Oral
Vercesi AE State University of Campinas, BR Mitochondrial calcium transport in animal, plant and trypanosomes Oral
Volska K Riga Stradins University, Riga, LV The inhibitor of L-carnitine biosynthesis protects brain mitochondria against anoxia-reoxygenation injury. Poster
Votion DM University of Liège, BE The challenge of understanding myopathies in horses using permeabilized and cultured equine muscle cells Oral
Wieckowski MR Nencki Institute of Experimental Biology, Warsaw, PL Mitochondrial parameters and ROS production can be used to differentiate mitochondrial defects in fibroblasts from patients with mitochondrial defects Oral
Wojtala A Nencki Institute of Experimental Biology, Warsaw, PL Comparative studies of reactive oxygen species production and the level of antioxidant defense system in the fibroblasts derived from patients with defined mitochondrial disorders Oral
Wright L Dipartimento di Scienze Biomediche, Padova, IT Calcium regulation of metabolism in adipocytes Oral
Zelenka J Academy of Sciences, Prague, CZ Response of cancer cells to mitochondrial DNA damage; Poster: Reverse carboxylation glutaminolysis in breast cancer cells Poster

Session on high-altitute mitochondrial physiology and hypoxia


Pre-conference Workshop

Cookies help us deliver our services. By using our services, you agree to our use of cookies.