Gnaiger 2023 MitoFit CII: Difference between revisions

From Bioblast
No edit summary
No edit summary
Line 15: Line 15:


__TOC__
__TOC__
== Is there a problem ? ==
:::::: [[File:Arnold, Finley 2022 Fig1.png|600px|link=Arnold 2023 J Biol Chem]]
:::: Ref. [1] Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299:102838. - [[Arnold 2023 J Biol Chem |Ā»Bioblast linkĀ«]]
<br>
== FADH<sub>2</sub> and FMNH<sub>2</sub> in the S- and N-pathways ==
[[File:N-S FADH2-FMNH2.png|right|400px]]
:::: Respiratory Complex CII participates both in the membrane-bound electron transfer system (membrane-ETS) and TCA cycle (matrix-ETS plus CII; [[BEC_2020.1_doi10.26124bec2020-0001.v1 |Gnaiger et al 2020]]). Branches of electron transfer from the reduced coenzyme NADH of nicotinamide adenine dinucleotide N and succinate S converge at the Q-junction in the ETS ('''Figure ;a''' modified from [[Gnaiger_2020_BEC_MitoPathways |Gnaiger 2020]]).
:::: The reduced flavin groups FADH<sub>2</sub> of flavin adenine dinucleotide and FMNH<sub>2</sub> of flavin mononucleotide are at functionally comparable levels in the electron transfer to Q from CII and CI, respectively, just as succinate and NADH are the comparable reduced substrates of CII and CI, respectively ([[Gnaiger_2020_BEC_MitoPathways |Gnaiger 2020]]). In CII the oxidized form FAD is reduced by succinate to the product FADH<sub>2</sub> and the oxidized product fumarate in the TCA cycle. In CI FMN is reduced by NADH forming FMNH<sub>2</sub> and the oxidized NAD<sup>+</sup>. FADH<sub>2</sub> and FMNH<sub>2</sub> are reoxidized downstream in CII and CI by electron transfer to Q in the membrane-bound ETS ('''Figure b''').
:::: Ref. [2]Ā  Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. https://doi.org/10.26124/bec:2020-0002
:::: Ref. [3]Ā  Gnaiger E et al ā€• MitoEAGLE Task Group (2020) Mitochondrial physiology. https://doi.org/10.26124/bec:2020-0001.v1
=== The source and consequence of Complex II ambiguities ===
:::: Ambiguities emerge if the presentation of a concept is vague to an extent that allows for equivocal interpretations. As a consequence of ambiguous representations, even a basically clear and quite simple concept may be communicated further without appropriate reflection as an erroneous divergence from an established truth. The following quotes from Cooper (2000) provide an example.
:::::: [[File:Cooper 2000 Sunderland 10-9.png|700px]]
:::: Ref. [4]Ā  Cooper GM (2000) The cell: a molecular approach. 2nd edition. Sunderland (MA): Sinauer Associates Available from: https://www.ncbi.nlm.nih.gov/books/NBK9885/Ā  - [[Cooper 2000 Sunderland (MA): Sinauer Associates |Ā»Bioblast linkĀ«]]
:::: (''1'') 'Electrons from NADH enter the electron transport chain in complex I, .. A distinct protein complex (complex II), which consists of four polypeptides, receives electrons from the citric acid cycle intermediate, succinate (Figure 10.9). These electrons are transferred to FADH<sub>2</sub>, rather than to NADH, and then to coenzyme Q.'
:::::: ''Comment'': Here, the frequent comparison is made between FADH<sub>2</sub> (linked to CII) and NADH (linked to CI).
:::: (''2'') 'In contrast to the transfer of electrons from NADH to coenzyme Q at complex I, the transfer of electrons from FADH<sub>2</sub> to coenzyme Q is not associated with a significant decrease in free energy and, therefore, is not coupled to ATP synthesis.'
:::::: ''Comment'': Note that CI is '''''in''''' the path of the transfer of electrons from NADH to coenzyme Q. In contrast, the transfer of electrons from FADH<sub>2</sub> to coenzyme Q is '''''downstream''''' of CII. Thus even a large Gibbs force ('decrease in free energy') in FADH<sub>2</sub>ā†’Q would fail to drive the coupled process of proton translocation through CII, since the Gibbs force in Sā†’FADH<sub>2</sub> is missing. (In parentheses: None of these steps are coupled to ATP synthesis. Redox-driven proton translocation should not be confused with ''pmF''-driven phosphorylation of ADP).
:::: (''3'') 'Electrons from succinate enter the electron transport chain via FADH<sub>2</sub> in complex II. They are then transferred to coenzyme Q and carried through the rest of the electron transport chain ..'
:::: ''Comment'': The ambiguity is caused by a lack of unequivocal definition of the electron transfer system ('electron transport chain'). CII receives electrons (''1'') from succinate, yet it is suggested that electrons (from succinate) enter the electron transport chain (''3'') via FADH<sub>2</sub> in complex II. Then two contrasting definitions are implied of the term 'electron transport chain' or better membrane-bound electron transfer system, membrane-ETS. (''a'') If CII is part of the membrane-ETS, then electrons enter the membrane-ETS from succinate (''1'') but not from FADH<sub>2</sub>. (''b'') If electrons enter the 'electron transport chain' via FADH<sub>2</sub> in Complex II (''3''), then CII would be upstream and hence not part of the membrane-ETS (to which conclusion, obviously - see '''Figure''' - nobody would agree). Dismissing concept (''b'') of the membrane-ETS, then remains the ambiguity, if electrons enter the membrane-ETS from FADH<sub>2</sub> (''3'', wrong) or from succinate (''1'', correct).
=== FADH<sub>2</sub> - FAD confusion in the S-pathway ===


:::: FADH<sub>2</sub> appears in several publications as the substrate of CII in the electron transfer system linked to succinate oxidation. It is surprising that this error is widely propagated particularly in the most recent literature. For clarification, see [[Gnaiger_2020_BEC_MitoPathways |Gnaiger (2020) page 48]].
=== Supplement Figure S1 ===


:::: The following examples are listed chronologically and illustrate
:::: '''Figure S1.''' Complex II ambiguities in graphical representations on FADH<sub>2</sub> as a substrate of Complex II in the canonical forward electron transfer. Chronological sequence of publications from 2001 to 2023.
::::'''(1)''' '''ambiguities''' in graphical representations: '''FADH<sub>2</sub> is the product and substrate of CII''' in the same figure, e.g. DeBerardinis, Chandel (2016);
::::'''(2)''' '''evolving errors''' in graphical representations: e.g. from Figure 6 (ambiguity) to Figure 1 (error) in Chandel (2021);
::::'''(3)''' ambiguities with '''discrepancies between graphical representation and text''': e.g. Figure 1 (error) and text in Fisher-Wellman, Neufer (2012) - 'Reducing equivalents (NADH, FADH<sub>2</sub>) provide electrons that flow through complex I, the ubiquinone cycle (Q/QH<sub>2</sub>), complex III, cytochrome ''c'', complex IV, and to the final acceptor O<sub>2</sub> to form water' (correct);
::::'''(4)''' simple '''graphical errors''': e.g. Brownlee (2001), YĆ©pez et al (2018), Chen et al (2022); to
::::'''(5)''' propagation of the '''error in the graphical representation solidified by text''': e.g. Arnold, Finley (2022) with the following quotes:
::::::* 'SDH reduces FAD to FADH<sub>2</sub>, which donates its electrons to complex II';
::::::* 'each complete turn of the TCA cycle generates three NADH and one FADH<sub>2</sub> molecules, which donate their electrons to complex I and complex II, respectively';
::::::* 'complex I and complex II oxidize NADH and FADH<sub>2</sub>, respectively'.


:::::: [[File:Arnold, Finley 2022 CORRECTION.png|600px|link=Arnold 2023 J Biol Chem]]
:::::: [[File:Arnold, Finley 2022 CORRECTION.png|600px|link=Arnold 2023 J Biol Chem]]
:::: Ref. [1] Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299:102838. - [[Arnold 2023 J Biol Chem |Ā»Bioblast linkĀ«]]
:::: '''a''' Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299:102838. - [[Arnold 2023 J Biol Chem |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Chen 2022 Am J Physiol Cell Physiol CORRECTION.png|500px|link=Chen 2022 Am J Physiol Cell Physiol]]
:::::: [[File:Chen 2022 Am J Physiol Cell Physiol CORRECTION.png|500px|link=Chen 2022 Am J Physiol Cell Physiol]]
:::: Ref. [5] Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |Ā»Bioblast linkĀ«]]
:::: '''b''' Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. - [[Chen 2022 Am J Physiol Cell Physiol |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Turton 2022 Int J Mol Sci CORRECTION.png|500px|link=Turton 2022 Int J Mol Sci]]
:::::: [[File:Turton 2022 Int J Mol Sci CORRECTION.png|500px|link=Turton 2022 Int J Mol Sci]]
:::: Ref. [6] Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. Int J Mol Sci 23:7487. - [[Turton 2022 Int J Mol Sci |Ā»Bioblast linkĀ«]]
:::: '''c''' Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. Int J Mol Sci 23:7487. - [[Turton 2022 Int J Mol Sci |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::: Ref. [7] Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. StatPearls Publishing StatPearls [Internet]. Treasure Island (FL) - [[Ahmad 2022 StatPearls Publishing |Ā»Bioblast linkĀ«]]
:::: '''d''' Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. StatPearls Publishing StatPearls [Internet]. Treasure Island (FL) - [[Ahmad 2022 StatPearls Publishing |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Yuan 2022 Oxid Med Cell Longev CORRECTION.png|500px|link=Yuan 2022 Oxid Med Cell Longev]]
:::::: [[File:Yuan 2022 Oxid Med Cell Longev CORRECTION.png|500px|link=Yuan 2022 Oxid Med Cell Longev]]
:::: Ref. [8] Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. Oxid Med Cell Longev 2022:8803404. - [[Yuan 2022 Oxid Med Cell Longev |Ā»Bioblast linkĀ«]]
:::: '''e''' Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. Oxid Med Cell Longev 2022:8803404. - [[Yuan 2022 Oxid Med Cell Longev |Ā»Bioblast linkĀ«]]
<br>
<br>


:::: [[File:Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png|1000px|link=Chandel 2021 Cold Spring Harb Perspect Biol]] Ā 
:::: [[File:Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png|1000px|link=Chandel 2021 Cold Spring Harb Perspect Biol]] Ā 
:::: Ref. [9] Chandel NS (2021) Mitochondria. Cold Spring Harb Perspect Biol 13:a040543. - [[Chandel 2021 Cold Spring Harb Perspect Biol |Ā»Bioblast linkĀ«]] Ā 
:::: '''f''' Chandel NS (2021) Mitochondria. Cold Spring Harb Perspect Biol 13:a040543. - [[Chandel 2021 Cold Spring Harb Perspect Biol |Ā»Bioblast linkĀ«]] Ā 
<br>
<br>


:::::: [[File:Yin 2021 FASEB J CORRECTION.png|500px|link=Yin 2021 FASEB J]]
:::::: [[File:Yin 2021 FASEB J CORRECTION.png|500px|link=Yin 2021 FASEB J]]
:::: Ref. [10] Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. FASEB J 35:e21974. - [[Yin 2021 FASEB J |Ā»Bioblast linkĀ«]] Ā 
:::: '''g''' Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. FASEB J 35:e21974. - [[Yin 2021 FASEB J |Ā»Bioblast linkĀ«]] Ā 


:::::: [[File:Missaglia 2021 CORRECTION.png|500px|link=Missaglia 2021 Crit Rev Biochem Mol Biol]] Ā 
:::::: [[File:Missaglia 2021 CORRECTION.png|500px|link=Missaglia 2021 Crit Rev Biochem Mol Biol]] Ā 
:::: Ref. [11] Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. Crit Rev Biochem Mol Biol 56:360-72. - [[Missaglia 2021 Crit Rev Biochem Mol Biol |Ā»Bioblast linkĀ«]] Ā 
:::: '''h''' Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. Crit Rev Biochem Mol Biol 56:360-72. - [[Missaglia 2021 Crit Rev Biochem Mol Biol |Ā»Bioblast linkĀ«]] Ā 
<br>
<br>


:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|500px|link=Gasmi 2021 Arch Toxicol]]
:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|500px|link=Gasmi 2021 Arch Toxicol]]
:::: Ref. [12] Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, BjĆørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 95:1161-78. - [[Gasmi 2021 Arch Toxicol |Ā»Bioblast linkĀ«]]
:::: '''i''' Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, BjĆørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 95:1161-78. - [[Gasmi 2021 Arch Toxicol |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::: Ref. [13] Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opinion on Orphan Drugs 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |Ā»Bioblast linkĀ«]]
:::: '''j''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opinion on Orphan Drugs 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Martinez-Reyes, Chandel 2020 CORRECTION.png|600px|link=Martinez-Reyes 2020 Nat Commun]]
:::::: [[File:Martinez-Reyes, Chandel 2020 CORRECTION.png|600px|link=Martinez-Reyes 2020 Nat Commun]]
:::: Ref. [14] MartĆ­nez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. - [[Martinez-Reyes 2020 Nat Commun |Ā»Bioblast linkĀ«]]
:::: '''k''' MartĆ­nez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. - [[Martinez-Reyes 2020 Nat Commun |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Raimondi 2020 Br J Cancer CORRECTION.png|400px|link=Raimondi 2020 Br J Cancer]]
:::::: [[File:Raimondi 2020 Br J Cancer CORRECTION.png|400px|link=Raimondi 2020 Br J Cancer]]
:::: Ref. [15] Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 122:168-81. - [[Raimondi 2020 Br J Cancer |Ā»Bioblast linkĀ«]]
:::: '''l''' Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 122:168-81. - [[Raimondi 2020 Br J Cancer |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Morelli 2019 Open Biol CORRECTION.png|500px|link=Morelli 2019 Open Biol]]
:::::: [[File:Morelli 2019 Open Biol CORRECTION.png|500px|link=Morelli 2019 Open Biol]]
:::: Ref. [16] Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 9:180221. - [[Morelli 2019 Open Biol |Ā»Bioblast linkĀ«]]
:::: '''m''' Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 9:180221. - [[Morelli 2019 Open Biol |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Lewis 2019 CORRECTION.png|500px|link=Lewis 2019 Int J Mol Sci]]
:::::: [[File:Lewis 2019 CORRECTION.png|500px|link=Lewis 2019 Int J Mol Sci]]
:::: Ref. [17] Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. Int J Mol Sci 20:5271. - [[Lewis 2019 Int J Mol Sci |Ā»Bioblast linkĀ«]]
:::: '''n''' Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. Int J Mol Sci 20:5271. - [[Lewis 2019 Int J Mol Sci |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Sarmah 2019 Transl Stroke Res CORRECTION.png|500px|link=Sarmah 2019 Transl Stroke Res]]
:::::: [[File:Sarmah 2019 Transl Stroke Res CORRECTION.png|500px|link=Sarmah 2019 Transl Stroke Res]]
:::: Ref. [18] Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res doi: 10.1007/s12975-018-0642-y - [[Sarmah 2019 Transl Stroke Res |Ā»Bioblast linkĀ«]]
:::: '''o''' Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res doi: 10.1007/s12975-018-0642-y - [[Sarmah 2019 Transl Stroke Res |Ā»Bioblast linkĀ«]]


:::::: [[File:Yepez 2018 PLOS One Fig1B.jpg|300px|link=Yepez 2018 PLOS One]]
:::::: [[File:Yepez 2018 PLOS One Fig1B.jpg|300px|link=Yepez 2018 PLOS One]]
:::: Ref. [19] YĆ©pez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, KoňaÅ™Ć­kovĆ” E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLOS ONE 13:e0199938. - [[Yepez 2018 PLOS One |Ā»Bioblast linkĀ«]]
:::: '''p''' YĆ©pez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, KoňaÅ™Ć­kovĆ” E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLOS ONE 13:e0199938. - [[Yepez 2018 PLOS One |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png|400px|link=Chowdhury 2018 Oxid Med Cell Longev]]
:::::: [[File:Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png|400px|link=Chowdhury 2018 Oxid Med Cell Longev]]
:::: Ref. [20] Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. Oxid Med Cell Longev 2018:2426712. - [[Chowdhury 2018 Oxid Med Cell Longev |Ā»Bioblast linkĀ«]]
:::: '''q''' Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. Oxid Med Cell Longev 2018:2426712. - [[Chowdhury 2018 Oxid Med Cell Longev |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:De Villiers 2018 Adv Exp Med Biol CORRECTION.png|400px|link=De Villiers 2018 Adv Exp Med Biol]]
:::::: [[File:De Villiers 2018 Adv Exp Med Biol CORRECTION.png|400px|link=De Villiers 2018 Adv Exp Med Biol]]
:::: Ref. [21] de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. Adv Exp Med Biol 1083:125-144. - [[De Villiers 2018 Adv Exp Med Biol |Ā»Bioblast linkĀ«]]
:::: '''r''' de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. Adv Exp Med Biol 1083:125-144. - [[De Villiers 2018 Adv Exp Med Biol |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Zhang 2018 Mil Med Res CORRECTION.png|400px|link=Zhang 2018 Mil Med Res]]
:::::: [[File:Zhang 2018 Mil Med Res CORRECTION.png|400px|link=Zhang 2018 Mil Med Res]]
:::: Ref. [22] Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Mil Med Res 5:41. - [[Zhang 2018 Mil Med Res |Ā»Bioblast linkĀ«]]
:::: '''s''' Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Mil Med Res 5:41. - [[Zhang 2018 Mil Med Res |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Polyzos 2017 Mech Ageing Dev CORRECTION.png|400px|link=Polyzos 2017 Mech Ageing Dev]]
:::::: [[File:Polyzos 2017 Mech Ageing Dev CORRECTION.png|400px|link=Polyzos 2017 Mech Ageing Dev]]
:::: Ref. [23] Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. Mech Ageing Dev 161:181-97. - [[Polyzos 2017 Mech Ageing Dev |Ā»Bioblast linkĀ«]]
:::: '''t''' Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. Mech Ageing Dev 161:181-97. - [[Polyzos 2017 Mech Ageing Dev |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Jones, Bennett 2017 Chapter 4 CORRECTION.png|400px|link=Jones 2017 Elsevier]]
:::::: [[File:Jones, Bennett 2017 Chapter 4 CORRECTION.png|400px|link=Jones 2017 Elsevier]]
:::: Ref. [24] Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid Ī²-oxidation. Elsevier In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - [[Jones 2017 Elsevier |Ā»Bioblast linkĀ«]]
:::: '''u''' Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid Ī²-oxidation. Elsevier In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - [[Jones 2017 Elsevier |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:DeBerardinis, Chandel 2016 CORRECTION.png|600px|link=DeBerardinis 2016 Sci Adv]]
:::::: [[File:DeBerardinis, Chandel 2016 CORRECTION.png|600px|link=DeBerardinis 2016 Sci Adv]]
:::: Ref. [25] DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. - [[DeBerardinis 2016 Sci Adv |Ā»Bioblast linkĀ«]]
:::: '''v''' DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. - [[DeBerardinis 2016 Sci Adv |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png|600px|link=Nsiah-Sefaa 2016 Biosci Rep]]
:::::: [[File:Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png|600px|link=Nsiah-Sefaa 2016 Biosci Rep]]
:::: Ref. [26] Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid Ī²-oxidation in mitochondrial disease. Biosci Rep 36:e00313. - [[Nsiah-Sefaa 2016 Biosci Rep |Ā»Bioblast linkĀ«]]
:::: '''w''' Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid Ī²-oxidation in mitochondrial disease. Biosci Rep 36:e00313. - [[Nsiah-Sefaa 2016 Biosci Rep |Ā»Bioblast linkĀ«]]
<br>
<br>
Ā  Ā 
Ā  Ā 
:::::: [[File:Prochaska 2013 Springer CORRECTION.png|400px|link=Prochaska 2013 Springer]]
:::::: [[File:Prochaska 2013 Springer CORRECTION.png|400px|link=Prochaska 2013 Springer]]
:::: Ref. [27] Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - [[Prochaska 2013 Springer |Ā»Bioblast linkĀ«]]
:::: '''x''' Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - [[Prochaska 2013 Springer |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Fisher-Wellman 2012 Trends Endocrinol Metab CORRECTION.png|400px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]] [[File:Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png|400px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]]
:::::: [[File:Fisher-Wellman 2012 Trends Endocrinol Metab CORRECTION.png|400px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]] [[File:Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png|400px|link=Fisher-Wellman 2012 Trends Endocrinol Metab]]
:::: Ref. [28] Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142-53. - [[Fisher-Wellman 2012 Trends Endocrinol Metab |Ā»Bioblast linkĀ«]]
:::: '''y''' Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142-53. - [[Fisher-Wellman 2012 Trends Endocrinol Metab |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Benard 2011 Springer CORRECTION.png|500px|link=Benard 2011 Springer]]
:::::: [[File:Benard 2011 Springer CORRECTION.png|500px|link=Benard 2011 Springer]]
:::: Ref. [29] Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. Springer ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |Ā»Bioblast linkĀ«]]
:::: '''z''' Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. Springer ISBN 978-94-007-1290-4:47-68. - [[Benard 2011 Springer |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Nussbaum 2005 J Clin Invest CORRECTION.png|500px|link=Nussbaum 2005 J Clin Invest]]
:::::: [[File:Nussbaum 2005 J Clin Invest CORRECTION.png|500px|link=Nussbaum 2005 J Clin Invest]]
:::: Ref. [30] Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. J Clin Invest 115:2689-91. - [[Nussbaum 2005 J Clin Invest |Ā»Bioblast linkĀ«]]
:::: '''Ī±''' Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. J Clin Invest 115:2689-91. - [[Nussbaum 2005 J Clin Invest |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Sanchez et al 2001 CORRECTION.png|600px|link=Sanchez 2001 Br J Pharmacol]]
:::::: [[File:Sanchez et al 2001 CORRECTION.png|600px|link=Sanchez 2001 Br J Pharmacol]]
:::: Ref. [31] Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. Br J Pharmacol 133:781-8. - [[Sanchez 2001 Br J Pharmacol |Ā»Bioblast linkĀ«]]
:::: '''Ī²''' Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. Br J Pharmacol 133:781-8. - [[Sanchez 2001 Br J Pharmacol |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Himms-Hagen, Harper 2001 CORRECTION.png|250px|link=Himms-Hagen 2001 Exp Biol Med (Maywood)]]
:::::: [[File:Himms-Hagen, Harper 2001 CORRECTION.png|250px|link=Himms-Hagen 2001 Exp Biol Med (Maywood)]]
:::: Ref. [32] Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226:78-84. - [[Himms-Hagen 2001 Exp Biol Med (Maywood) |Ā»Bioblast linkĀ«]]
:::: '''Ī³''' Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226:78-84. - [[Himms-Hagen 2001 Exp Biol Med (Maywood) |Ā»Bioblast linkĀ«]]
<br>
<br>


:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::::: [[File:Brownlee 2001 Nature CORRECTION.png|400px|link=Brownlee 2001 Nature]]
:::: Ref. [33] Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 14:813-20. - [[Brownlee 2001 Nature |Ā»Bioblast linkĀ«]]
:::: '''Ī“''' Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 14:813-20. - [[Brownlee 2001 Nature |Ā»Bioblast linkĀ«]]
:::: Ref. [34] Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. Webvision In: Kolb H, Fernandez E, Nelson R, eds. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |Ā»Bioblast linkĀ«]]
:::: Ref. [34] Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. Webvision In: Kolb H, Fernandez E, Nelson R, eds. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - [[Arden 2015 Webvision |Ā»Bioblast linkĀ«]]
<br>
<br>


=== FADH<sub>2</sub>ā†’CII misconceptions: Websites ===
=== Supplement Figure S2 ===


:::: The following graphs show zooms into the CII-related sections of figures found on the websites cited below. Erroneous presentations are marked by symbols. Ā 
:::: '''Figure S2'''. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. Websites (#): a 1-5; aā€™ 6-7; b 8; c 1, 6, 7, 9; d 10; e 4, 9, 11-16; f 17-18; g 19; h 20-21; i 22; j 6-7; k 9; l 23; m 24; n 25; o 26; p 27; q 28; r 29; s 30; t 31; u 9, 32; v 33; w 34; x 15, 17. Ā 


:::::: [[File:OpenStax Biology.png|400px]]
:::::: [[File:OpenStax Biology.png|400px]]

Revision as of 14:48, 24 March 2023

Publications in the MiPMap
Gnaiger E (2023) Complex II ambiguities ā€• FADH2 in the electron transfer system. MitoFit Preprints 2023.3. https://doi.org/10.26124/mitofit:2023-0003

Ā» MitoFit Preprints 2023.3.

MitoFit pdf

Complex II ambiguities ā€• FADH2 in the electron transfer system

Gnaiger Erich (2023) MitoFit Prep

Abstract:

CII-ambiguities Graphical abstract.png

The current narrative that the reduced coenzymes NADH and FADH2 feed electrons from the tricarboxylic acid (TCA) cycle into the mitochondrial electron transfer system can create ambiguities around respiratory Complex CII. Succinate dehydrogenase or CII reduces FAD to FADH2 in the canonical forward TCA cycle. However, some graphical representations of the membrane-bound electron transfer system (ETS) depict CII as the site of oxidation of FADH2. This leads to the false believe that FADH2 generated by electron transferring flavoprotein (CETF) in fatty acid oxidation and mitochondrial glycerophosphate dehydrogenase (CGpDH) feeds electrons into the ETS through CII. In reality, NADH and succinate produced in the TCA cycle are the substrates of Complexes CI and CII, respectively, and the reduced flavin groups FMNH2 and FADH2 are downstream products of CI and CII, respectively, carrying electrons from CI and CII into the Q-junction. Similarly, CETF and CGpDH feed electrons into the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature call for quality control, to secure scientific standards in current communications on bioenergetics and support adequate clinical applications.
ā€¢ Keywords: coenzyme Q junction; Complex CII; electron transfer system; fatty acid oxidation; flavin adenine dinucleotide; succinate dehydrogenase; tricarboxylic acid cycle

ā€¢ O2k-Network Lab: AT Innsbruck Oroboros


ORCID: ORCID.png Gnaiger Erich

Supplement Figure S1

Figure S1. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. Chronological sequence of publications from 2001 to 2023.
Arnold, Finley 2022 CORRECTION.png
a Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299:102838. - Ā»Bioblast linkĀ«


Chen 2022 Am J Physiol Cell Physiol CORRECTION.png
b Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. - Ā»Bioblast linkĀ«


Turton 2022 Int J Mol Sci CORRECTION.png
c Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. Int J Mol Sci 23:7487. - Ā»Bioblast linkĀ«


Ahmad 2022 StatPearls CORRECTION.png
d Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. StatPearls Publishing StatPearls [Internet]. Treasure Island (FL) - Ā»Bioblast linkĀ«


Yuan 2022 Oxid Med Cell Longev CORRECTION.png
e Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. Oxid Med Cell Longev 2022:8803404. - Ā»Bioblast linkĀ«


Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png
f Chandel NS (2021) Mitochondria. Cold Spring Harb Perspect Biol 13:a040543. - Ā»Bioblast linkĀ«


Yin 2021 FASEB J CORRECTION.png
g Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. FASEB J 35:e21974. - Ā»Bioblast linkĀ«
Missaglia 2021 CORRECTION.png
h Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. Crit Rev Biochem Mol Biol 56:360-72. - Ā»Bioblast linkĀ«


Gasmi 2021 Arch Toxicol CORRECTION.png
i Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, BjĆørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 95:1161-78. - Ā»Bioblast linkĀ«


Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png
j Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opinion on Orphan Drugs 9:151-60. - Ā»Bioblast linkĀ«


Martinez-Reyes, Chandel 2020 CORRECTION.png
k MartĆ­nez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. - Ā»Bioblast linkĀ«


Raimondi 2020 Br J Cancer CORRECTION.png
l Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 122:168-81. - Ā»Bioblast linkĀ«


Morelli 2019 Open Biol CORRECTION.png
m Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 9:180221. - Ā»Bioblast linkĀ«


Lewis 2019 CORRECTION.png
n Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. Int J Mol Sci 20:5271. - Ā»Bioblast linkĀ«


Sarmah 2019 Transl Stroke Res CORRECTION.png
o Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res doi: 10.1007/s12975-018-0642-y - Ā»Bioblast linkĀ«
Yepez 2018 PLOS One Fig1B.jpg
p YĆ©pez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, KoňaÅ™Ć­kovĆ” E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLOS ONE 13:e0199938. - Ā»Bioblast linkĀ«


Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png
q Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. Oxid Med Cell Longev 2018:2426712. - Ā»Bioblast linkĀ«


De Villiers 2018 Adv Exp Med Biol CORRECTION.png
r de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. Adv Exp Med Biol 1083:125-144. - Ā»Bioblast linkĀ«


Zhang 2018 Mil Med Res CORRECTION.png
s Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Mil Med Res 5:41. - Ā»Bioblast linkĀ«


Polyzos 2017 Mech Ageing Dev CORRECTION.png
t Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. Mech Ageing Dev 161:181-97. - Ā»Bioblast linkĀ«


File:Jones, Bennett 2017 Chapter 4 CORRECTION.png
u Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid Ī²-oxidation. Elsevier In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - Ā»Bioblast linkĀ«


DeBerardinis, Chandel 2016 CORRECTION.png
v DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. - Ā»Bioblast linkĀ«


Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png
w Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid Ī²-oxidation in mitochondrial disease. Biosci Rep 36:e00313. - Ā»Bioblast linkĀ«


Prochaska 2013 Springer CORRECTION.png
x Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - Ā»Bioblast linkĀ«


Fisher-Wellman 2012 Trends Endocrinol Metab CORRECTION.png Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png
y Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142-53. - Ā»Bioblast linkĀ«


Benard 2011 Springer CORRECTION.png
z Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. Springer ISBN 978-94-007-1290-4:47-68. - Ā»Bioblast linkĀ«


Nussbaum 2005 J Clin Invest CORRECTION.png
Ī± Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. J Clin Invest 115:2689-91. - Ā»Bioblast linkĀ«


Sanchez et al 2001 CORRECTION.png
Ī² Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. Br J Pharmacol 133:781-8. - Ā»Bioblast linkĀ«


Himms-Hagen, Harper 2001 CORRECTION.png
Ī³ Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226:78-84. - Ā»Bioblast linkĀ«


Brownlee 2001 Nature CORRECTION.png
Ī“ Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 14:813-20. - Ā»Bioblast linkĀ«
Ref. [34] Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. Webvision In: Kolb H, Fernandez E, Nelson R, eds. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - Ā»Bioblast linkĀ«


Supplement Figure S2

Figure S2. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. Websites (#): a 1-5; aā€™ 6-7; b 8; c 1, 6, 7, 9; d 10; e 4, 9, 11-16; f 17-18; g 19; h 20-21; i 22; j 6-7; k 9; l 23; m 24; n 25; o 26; p 27; q 28; r 29; s 30; t 31; u 9, 32; v 33; w 34; x 15, 17.
OpenStax Biology.png
Website 1: OpenStax Biology - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
Website 2: Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
Website 3: LibreTexts Biology - Figure 7.11.1
Website 4: lumen Biology for Majors I - Fig. 1
Website 5: Pharmaguideline
Khan Academy modified from OpenStax CORRECTION.png
Website 6: Khan Academy - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH2-error: "FADH2 .. feeds them (electrons) into the transport chain through complex II."
Website 7: Saylor Academy
Jack Westin CORRECTION.png
Website 8: Jack Westin MCAT Courses
Expii OpenStax CORRECTION.png
Website 1: OpenStax Biology - Fig. 7.12
Website 6: Khan Academy - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
Website 7: Saylor Academy
Website 9: expii - Image source: By CNX OpenStax
Labxchange CORRECTION.png
Website 10: Labxchange - Figure 8.15 credit: modification of work by Klaus Hoffmeier
Biologydictionary.net CORRECTION.png
Website 4: lumen Biology for Majors I - Fig. 3
Website 9: expii - By OpenStax College CC BY 3.0, via Wikimedia Commons
Website 11: wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19
Website 12: biologydictionary.net 2018-08-21
Website 13: Quora
Website 14: TeachMePhysiology - Fig. 1. 2023-03-13
Website 15: ThoughtCo
Website 16: toppr
Researchtweet CORRECTION.png
Website 17: researchtweet
Website 18: Microbe Notes
BiochemDen CORRECTION.png
Website 19: BiochemDen.com
Vector Mine CORRECTION.png
Website 20: dreamstime
Website 21: VectorMine
Creative-biolabs CORRECTION.png
Website 22: creative-biolabs
Khan Academy CORRECTION.png
Website 6: Khan Academy
Website 7: Saylor Academy
Expii-Whitney, Rolfes 2002 CORRECTION.png
Website 9: expii - Whitney, Rolfes 2002
FlexBooks 2 0 CORRECTION.png
Website 23: FlexBooks - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
Hyperphysics CORRECTION.png
Website 24: hyperphysics
Labster Theory CORRECTION.png
Website 25: Labster Theory
Nau.edu CORRECTION.png
Website 26: nau.edu
Quizlet CORRECTION.png
Website 27: Quizlet
ScienceDirect CORRECTION.png
Website 28: ScienceDirect
ScienceFacts CORRECTION.png
Website 29: ScienceFacts
SNC1D CORRECTION.png
Website 30: SNC1D - BIOLOGY LESSON PLAN BLOG
Unm.edu CORRECTION.png
Website 31: unm.edu
Wikimedia ETC CORRECTION.png
Website 9: expii - By User:Rozzychan CC BY-SA 2.5, via Wikimedia Commons
Website 32: Wikimedia
YouTube Dirty Medicine Biochemistry CORRECTION.png
Website 33: YouTube Dirty Medicine Biochemistry - Uploaded 2019-07-18
YouTube sciencemusicvideos CORRECTION.png
Website 34: YouTube sciencemusicvideos - Uploaded 2014-08-19
ThoughtCo-Getty Images CORRECTION.png
Website 15: ThoughtCo - extender01 / iStock / Getty Images Plus
Website 17: dreamstime


CII and fatty acid oxidation

F-junction Wang 2019 Fig8.png
Fatty acid oxidation requires electron transferring flavoprotein CETF and CI for electron entry into the Q-junction (Gnaiger 2020; Wang et al 2019; see figures on the right).
Missaglia 2021 Crit Rev Biochem Mol Biol CORRECTION.png
When FADH2 is erroneously shown as a substrate of CII (1), a role of CII in fatty acid oxidation is suggested as a consequence (2).
Website 35: Conduct Science: "In Complex II, the enzyme succinate dehydrogenase in the inner mitochondrial membrane reduce FADH2 to FAD+. Simultaneously, succinate, an intermediate in the Krebs cycle, is oxidized to fumarate." - Comments: FAD does not have a postive charge. FADH2 is the reduced form, it is not reduced. And again: In CII, FAD is reduced to FADH2.
Expii-Gabi Slizewska CORRECTION.png
Website 9: expii - Image source: By Gabi Slizewska. The ambiguity in the graphical representation is solidified as an error in the text: In the second step, Complex II receives electrons from FADH2, oxidizing it to FAD.
  • "Since mitochondrial Complex II also participates in the oxidation of fatty acids (6), .." (quote from Lemmi et al 1990).
  • Ref 6: Tzagoloff A (1982) Mitochondria. Plenum, New York.
  • This quote is ambiguous. The textbook by Tzagoloff (1982) represents fatty acid oxidation in figures and text without involvement of CII. Oxidation of acetyl-CoA, however, proceeds in the TCA cycle into which CII is integrated.
FAO-CII Medical Biochemistry Page.jpg
Website 36: The Medical Biochemistry Page - Figure and text go together: "In addition to transferring electrons from the FADH2 generated by SDH, complex II also accepts electrons from the FADH2 generated during fatty acid oxidation via the fatty acyl-CoA dehydrogenases and from mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) of the glycerol phosphate shuttle".
Website 37: CHM333 LECTURES 37 & 38: 4/27 ā€“ 29/13 SPRING 2013 Professor Christine Hrycyna - Acyl-CoA dehydrogenase is listed under 'Electron transfer in Complex II'.


Labels:






MitoPedia:FAT4BRAIN 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.