Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Zdrazilova Lucie"

From Bioblast
Line 45: Line 45:


== Participated at ==
== Participated at ==
::::* [[IOC139| IOC139 Schroecken AT]]
::::* [[IOC137| IOC137 Innsbruck AT]]
::::* [[IOC137| IOC137 Innsbruck AT]]
::::* [[MiPschool Tromso-Bergen 2018| MiPschool 2018 Tromso-Bergen NO]]
::::* [[MiPschool Tromso-Bergen 2018| MiPschool 2018 Tromso-Bergen NO]]
::::*[[MiP2018/MitoEAGLE Jurmala LV|MitoEAGLE 2018 Jurmala LV]]
::::* [[MiP2018/MitoEAGLE Jurmala LV|MitoEAGLE 2018 Jurmala LV]]

Revision as of 15:04, 18 June 2019


MiPsociety
News and Events        
BEC 2020.1 Mitochondrial physiology
       
MitoEAGLE
        Working Groups         Short-Term Scientific Missions         Management Committee         Members        
MitoGlobal
   


EU-logo.jpg

COST Action CA15203 (2016-2021): MitoEAGLE
Evolution-Age-Gender-Lifestyle-Environment: mitochondrial fitness mapping


Zdrazilova Lucie


MitoPedia topics: EAGLE 

COST: Member COST WG1: WG1


Name Zdrazilova Lucie,
Institution
Lucie Zdrazilova

First Faculty of Medicine,

Charles University, CZ

Address Kateřinská 1660/32, 121 08
City Praha 2
State/Province
Country Czech Republic
Email luciezdrazilova@email.cz
Weblink
O2k-Network Lab CZ Prague Zeman J


Labels:



Publications

 PublishedReference
Zdrazilova 2022 PLOS ONE2022Zdrazilova L, Hansikova H, Gnaiger E (2022) Comparable respiratory activity in attached and suspended human fibroblasts. https://doi.org/10.1371/journal.pone.0264496
BEC 2020.1 doi10.26124bec2020-0001.v12020Gnaiger E et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. https://doi.org/10.26124/bec:2020-0001.v1

Abstracts

 PublishedReference
Leo 2023 ESCI Prague2023
Leo Elettra
Leo E, Zdrazilova L, Garcia-Souza LF, Åsander-Frostner E, Elmér E, Gnaiger E (2023) High-resolution respirometry is comparable in 0.5 mL and 2.0 mL chamber volumes: studies with platelets, permeabilized fibroblasts, and isolated mitochondria. 57th Annual Scientific Meeting of the European Society for Clinical Investigation.
Gnaiger 2019 NatureConference2019Gnaiger E, Passrugger M, Gallee L, Felipe F Garcia-Souza, Zdrazilova L, Doerrier C (2019) High-resolution respirometry and innovations in the Oroboros O2k-technology.
Danhelovska 2018 MiP20182018
MiPsociety
The relevance of ACBD3 protein in energy metabolism in various cell lines. Danhelovska_Presentation
Zdrazilova 2018 MiP20182018
MiPsociety
No abstract.
Zdrazilova 2018 MiPschool Tromso C42018
MiPsociety
Bioenergetic characterization of skin fibroblasts from patients with congenital disorders of glycosylation.

MitoEAGLE Short-Term Scientific Mission

Work Plan summary
Congenital disorders of glycosylation (CDG) are rare inherited diseases caused by abnormal protein and lipid glycosylation. Recent published and our preliminary data indicated possible interconnection between glycosylation defects and mitochondrial function abnormalities. The study of mitochondrial metabolism in congenital disorders of glycosylation may contribute to the elucidation of pathomechanisms in unclear metabolic diseases.
Aim of study will be to analyze fibroblasts from patients with CDG and their impact on cellular and energetic metabolism with help of OROBOROS with classical and new applications. The project will be focused on measuring mitochondrial respiration on fresh permeabilized fibroblast cell lines from patients with CDG. Our preliminary results indicate secondary functional abnormalities in mitochondria and glycolytic dysfunction due to a breakdown of the glycosylation pathway. We would like also to focus on measurements of membrane potential and ROS production in some of these CDG patients, because changes in ROS production and also membrane potential were found previously in CDG by other methods in our laboratory.
In parallel, we will analyze fibroblasts lines from patients with proved or suspect for other rare metabolic diseases. For example, reduced level of ubiquinone was revealed in some patient’s fibroblasts by using HPLC method. This is the reason, why we would like to focus on measuring Q-redox changes in permeabilized fibroblasts to see how reduced Q level can involve in Q-redox changes.
This project should help us to find cellular pathways interconnections with help of complex approach by investigation of mitochondrial respiration, ROS production, membrane potential and Q-redox changes in O2k-FluoRespirometer. The identical protocol will be used for all methods, which should give us more valid correlation between these different types of measurements.
Results could reveal more information about pathomechanisms of CDG and other selected rare diseases, give us new knowledge about mitochondrial physiology and energetic metabolism in fibroblast cell lines and could show us cooperation between different metabolic pathways. This STSM gives us opportunity to consolidate and expand cooperation with OROBOROS Instrument laboratory as well.
First period of this STSM will be focused on learning new types of measurements on O2k-FluoRespirometer. Digitonin test and toxicity test of some chemicals will be performed for optimizing the planned protocol. Afterwards pilot experiments will be performed on control fibroblast cell lines and then on very slowly growing fibroblasts from patients with diagnosed CDG or other fibroblasts from patients with rare inherited metabolic diseases. All data will be analyzed and statistically processed. The output of this study is planned to be finally published.
Work Plan summary
My name is Lucie Zdrazilova and in October 2018 I started my PhD studies focused on Congenital disorders of glycosylation and their impact on cellular and energetic metabolism. The study of mitochondrial metabolism in congenital disorders of glycosylation may contribute to the elucidation of pathomechanisms in unclear metabolic diseases. We would like to focus on measuring mitochondrial respiration on permeabilized fibroblast cell lines from patients with congenital disorders of glycosylation, because our preliminary results indicate secondary functional abnormalities in mitochondria and glycolytic dysfunction due to a breakdown of the glycosylation pathway. The growth of fibroblast cell lines from patients with congenital disorders of glycosylation is the most limiting factor for our measurements to this date and smaller amount of cells would help us to get more data in shorter time. According to this fact, I would like to participate in optimizing new method using smaller chambers on O2k-FluoRespirometer during STSM in Prof. Gnaiger´s Laboratory. This new method with new type of SUIT protocol and smaller chambers would really help to our project, on which I am focused in my postgraduation studies. Furthermore STSM would be very helpful for me to achieve a lot of new experiences with measuring on O2k-FluoRespirometer in most specialized laboratory in the world for mitochondrial respiration measurements on this instrument and will be used a lot in our following-up project.
These results could help also to other scientists working with cell cultures and measuring mitochondrial respiration in O2k-FluoRespirometer to get their results in shorter time because of reduced material requirements. Especially scientists using fibroblast cell lines from patients with mitochondrial disorders and with congenital disorders of glycosylation or other diseases could appreciate this reduced amount. Thus, STSM will be focused to target specific goals in MoU i.e. “Providing standardized measurements to link mitochondrial and physiological performance to understand the myriad of factors that play a role in mitochondrial physiology” and devoted to complete specific WG1 and WG4.
This STSM will be focused on creating new methodological techniques with using additional equipment for O2k-FluoRespirometer, smaller chambers. We will also focus on creating protocol which will suit the best for our following up project. In this STSM I will improve my skills of O2k-FluoRespirometer use and working with different types of cells and get knowledge of different types of cell measurements. This STSM will have a purpose of getting more information about mitochondrial physiology and energetic metabolism in fibroblast cell lines and also in different types of cells. Working in different laboratory will improve my skills in team building, socializing and also help me to improve my English communication ability. This STSM gives us opportunities consolidate and expand cooperation with OROBOROS laboratory.
First week of this STSM will be focused on training for measurement on O2k-FluoRespirometer and running a proficiency tests. Thereafter we will focus on comparing measurement results of the 0.5 and 2.0 mL chambers with HEK293 cells and thereafter with control fibroblast cell lines by using optimized SUIT protocol. Results of STSM will serve as background for additional experiments on Seahorse XFe24 Bioanalyzer and O2k-Respirometer provided in our laboratory in Prague. The identical SUIT-3 protocol and identical conditions will be used for quantitative comparison of results obtained by the Seahorse XFe24 Bioanalyzer with attached fibroblasts, and by the O2k-FluoRespirometer with suspended cells. The output of this study is planned to be finally published.


Visiting scientist in the Oroboros MitoFit Laboratory

O2k-Network

Zdrazilova Lucie: Visiting scientist at the Oroboros MitoFit Laboratory

  • June 03 to September 28 2019
  • December 10 2018 to March 08 2019


Participated at