Gnaiger 2023 MitoFit CII: Difference between revisions

From Bioblast
No edit summary
No edit summary
Line 40: Line 40:
:::::: [[File:Kumar 2021 J Biol Chem CORRECTION.png|400px|link=Kumar 2021 J Biol Chem]]
:::::: [[File:Kumar 2021 J Biol Chem CORRECTION.png|400px|link=Kumar 2021 J Biol Chem]]
:::: '''4''' Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H<sub>2</sub>S oxidation. '''J Biol Chem''' 298:101435. - [[Kumar 2021 J Biol Chem |»Bioblast link«]]
:::: '''4''' Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H<sub>2</sub>S oxidation. '''J Biol Chem''' 298:101435. - [[Kumar 2021 J Biol Chem |»Bioblast link«]]
<br>
:::::: [[File:Hidalgo-Gutierrez CORRECTION.png|400px|link=Hidalgo-Gutierrez 2021 Antioxidants (Basel)]]
:::: '''5''' Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. '''Antioxidants (Basel)''' 10:520. - [[Hidalgo-Gutierrez 2021 Antioxidants (Basel) |»Bioblast link«]]
<br>
<br>


:::::: [[File:Han 2021 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2021 Am J Respir Cell Mol Biol]]
:::::: [[File:Han 2021 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2021 Am J Respir Cell Mol Biol]]
:::: '''5''' Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. '''Am J Respir Cell Mol Biol''' 65:134-45. - [[Han 2021 Am J Respir Cell Mol Biol |»Bioblast link«]]
:::: '''6''' Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. '''Am J Respir Cell Mol Biol''' 65:134-45. - [[Han 2021 Am J Respir Cell Mol Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::::: [[File:Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png|400px|link=Chakrabarty 2021 Cell Stem Cell]]
:::: '''6''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
:::: '''7''' Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. '''Cell Stem Cell''' 28:394-408. - [[Chakrabarty 2021 Cell Stem Cell |»Bioblast link«]]
<br>
<br>


:::::: [[File:Martinez-Reyes 2020 Nature CORRECTION.png|400px|link=Martinez-Reyes 2020 Nature]]
:::::: [[File:Martinez-Reyes 2020 Nature CORRECTION.png|400px|link=Martinez-Reyes 2020 Nature]]
:::: '''7''' Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. '''Nature''' 585:288-92. - [[Martinez-Reyes 2020 Nature |»Bioblast link«]]
:::: '''8''' Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. '''Nature''' 585:288-92. - [[Martinez-Reyes 2020 Nature |»Bioblast link«]]
<br>
<br>


:::::: [[File:McElroy 2020 Cell Metab CORRECTION.png|400px|link=McElroy 2020 Cell Metab]]
:::::: [[File:McElroy 2020 Cell Metab CORRECTION.png|400px|link=McElroy 2020 Cell Metab]]
:::: '''8''' McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. '''Cell Metab''' 32:301-8.e6. - [[McElroy 2020 Cell Metab |»Bioblast link«]]
:::: '''9''' McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. '''Cell Metab''' 32:301-8.e6. - [[McElroy 2020 Cell Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:Jian 2020 Cell Metab CORRECTION.png|400px|link=Jian 2020 Cell Metab]]
:::::: [[File:Jian 2020 Cell Metab CORRECTION.png|400px|link=Jian 2020 Cell Metab]]
:::: '''9''' Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. '''Cell Metab''' 31:892-908. - [[Jian 2020 Cell Metab |»Bioblast link«]]   
:::: '''10''' Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. '''Cell Metab''' 31:892-908. - [[Jian 2020 Cell Metab |»Bioblast link«]]   
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
:::::: While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH<sub>2</sub> as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.
<br>
<br>


:::::: [[File:Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png|400px|link=Tabassum 2020 J Biomed Res Environ Sci]]
:::::: [[File:Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png|400px|link=Tabassum 2020 J Biomed Res Environ Sci]]
:::: '''10''' Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. '''J Biomed Res Environ Sci''' 1:105-13. |»Bioblast link«]]
:::: '''11''' Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. '''J Biomed Res Environ Sci''' 1:105-13. |»Bioblast link«]]
<br>
<br>


:::::: [[File:Han 2019 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2019 Am J Respir Cell Mol Biol]]
:::::: [[File:Han 2019 Am J Respir Cell Mol Biol CORRECTION.png|400px|link=Han 2019 Am J Respir Cell Mol Biol]]
:::: '''11''' Han S, Chandel NS (2019) There is no smoke without mitochondria. '''Am J Respir Cell Mol Biol''' 60:489-91. - [[Han 2019 Am J Respir Cell Mol Biol |»Bioblast link«]]
:::: '''12''' Han S, Chandel NS (2019) There is no smoke without mitochondria. '''Am J Respir Cell Mol Biol''' 60:489-91. - [[Han 2019 Am J Respir Cell Mol Biol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Grandoch 2019 Nat Metab CORRECTION.png|300px|link=Grandoch 2019 Nat Metab]]
:::::: [[File:Grandoch 2019 Nat Metab CORRECTION.png|300px|link=Grandoch 2019 Nat Metab]]
:::: '''12''' Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. '''Nat Metab''' 1:546-59. - [[Grandoch 2019 Nat Metab |»Bioblast link«]]
:::: '''13''' Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. '''Nat Metab''' 1:546-59. - [[Grandoch 2019 Nat Metab |»Bioblast link«]]
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when '''FADH<sub>2</sub>''' is shown as the '''''substrate''''' of CII.
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when '''FADH<sub>2</sub>''' is shown as the '''''substrate''''' of CII.
<br>
<br>


:::::: [[File:McCollum 2019 Front Plant Sci CORRECTION.png|400px|link=McCollum 2019 Front Plant Sci]]
:::::: [[File:McCollum 2019 Front Plant Sci CORRECTION.png|400px|link=McCollum 2019 Front Plant Sci]]
:::: '''13''' McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. '''Front Plant Sci''' 10:1262. - [[McCollum 2019 Front Plant Sci |»Bioblast link«]]
:::: '''14''' McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. '''Front Plant Sci''' 10:1262. - [[McCollum 2019 Front Plant Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Torres 2017 Cell Metab CORRECTION.png|400px|link=Torres 2017 Cell Metab]]
:::::: [[File:Torres 2017 Cell Metab CORRECTION.png|400px|link=Torres 2017 Cell Metab]]
:::: '''14''' Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2017) 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. '''Cell Metab''' 27:167-79. - [[Torres 2017 Cell Metab |»Bioblast link«]]
:::: '''15''' Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2017) 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. '''Cell Metab''' 27:167-79. - [[Torres 2017 Cell Metab |»Bioblast link«]]
<br>
<br>


:::::: [[File:McElroy 2017 Exp Cell Res.png|400px|link=McElroy 2017 Exp Cell Res]]
:::::: [[File:McElroy 2017 Exp Cell Res.png|400px|link=McElroy 2017 Exp Cell Res]]
:::: '''15''' McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. '''Exp Cell Res''' 356:217-22. - [[McElroy 2017 Exp Cell Res |»Bioblast link«]]
:::: '''16''' McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. '''Exp Cell Res''' 356:217-22. - [[McElroy 2017 Exp Cell Res |»Bioblast link«]]
<br>
<br>


:::::: [[File:Martinez-Reyes 2016 Mol Cell CORRECTION.png|400px|link=Martinez-Reyes 2016 Mol Cell]]
:::::: [[File:Martinez-Reyes 2016 Mol Cell CORRECTION.png|400px|link=Martinez-Reyes 2016 Mol Cell]]
:::: '''16''' Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. '''Mol Cell''' 61:199-209. - [[Martinez-Reyes 2016 Mol Cell |»Bioblast link«]]
:::: '''17''' Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. '''Mol Cell''' 61:199-209. - [[Martinez-Reyes 2016 Mol Cell |»Bioblast link«]]
<br>
<br>


:::::: [[File:Cadonic 2016 Mol Neurobiol CORRECTION.png|400px|link=Cadonic 2016 Mol Neurobiol]]
:::::: [[File:Cadonic 2016 Mol Neurobiol CORRECTION.png|400px|link=Cadonic 2016 Mol Neurobiol]]
:::: '''17''' Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. '''Mol Neurobiol''' 53:6078-90. - [[Cadonic 2016 Mol Neurobiol |»Bioblast link«]]
:::: '''18''' Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. '''Mol Neurobiol''' 53:6078-90. - [[Cadonic 2016 Mol Neurobiol |»Bioblast link«]]
<br>
<br>


:::::: [[File:Sullivan 2014 Cell Cycle CORRECTION.png|400px|link=Sullivan 2014 Cell Cycle]]
:::::: [[File:Sullivan 2014 Cell Cycle CORRECTION.png|400px|link=Sullivan 2014 Cell Cycle]]
:::: '''18''' Sullivan LB, Chandel NS. (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. '''Cell Cycle''' 13:347-8. - [[Sullivan 2014 Cell Cycle |»Bioblast link«]]
:::: '''19''' Sullivan LB, Chandel NS. (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. '''Cell Cycle''' 13:347-8. - [[Sullivan 2014 Cell Cycle |»Bioblast link«]]
<br>
<br>


:::::: [[File:Beutner 2014 PLoS One CORRECTION.png|400px|link=Beutner 2014 PLoS One]]
:::::: [[File:Beutner 2014 PLoS One CORRECTION.png|400px|link=Beutner 2014 PLoS One]]
:::: '''19''' Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. '''PLoS One''' 9:e113330. - [[Beutner 2014 PLoS One |»Bioblast link«]]
:::: '''20''' Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. '''PLoS One''' 9:e113330. - [[Beutner 2014 PLoS One |»Bioblast link«]]
<br>
<br>


:::::: [[File:Hamanaka 2013 Cell Logist CORRECTION.png|400px|link=Hamanaka 2013 Cell Logist]]
:::::: [[File:Hamanaka 2013 Cell Logist CORRECTION.png|400px|link=Hamanaka 2013 Cell Logist]]
:::: '''20''' Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. '''Cell Logist''' 3:e25456. - [[Hamanaka 2013 Cell Logist |»Bioblast link«]]
:::: '''21''' Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. '''Cell Logist''' 3:e25456. - [[Hamanaka 2013 Cell Logist |»Bioblast link«]]
<br>
<br>


:::::: [[File:Keane 2011 Parkinsons Dis CORRECTION.png|400px|link=Keane 2011 Parkinsons Dis]]
:::::: [[File:Keane 2011 Parkinsons Dis CORRECTION.png|400px|link=Keane 2011 Parkinsons Dis]]
:::: '''21''' Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. '''Parkinsons Dis''' 2011:716871. - [[Keane 2011 Parkinsons Dis |»Bioblast link«]]
:::: '''22''' Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. '''Parkinsons Dis''' 2011:716871. - [[Keane 2011 Parkinsons Dis |»Bioblast link«]]
<br>
<br>


:::::: [[File:Snyder 2009 Antioxid Redox Signal.png|400px|link=Snyder 2009 Antioxid Redox Signal]]
:::::: [[File:Snyder 2009 Antioxid Redox Signal.png|400px|link=Snyder 2009 Antioxid Redox Signal]]
:::: '''22''' Hamanaka RB, Chandel NS (2013) Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. '''Antioxid Redox Signal''' 11:2673-83. - [[Snyder 2009 Antioxid Redox Signal |»Bioblast link«]]
:::: '''23''' Hamanaka RB, Chandel NS (2013) Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. '''Antioxid Redox Signal''' 11:2673-83. - [[Snyder 2009 Antioxid Redox Signal |»Bioblast link«]]
<br>
<br>


:::::: [[File:Liu 2009 J Biomed Sci CORRECTION.png|400px|link=Liu 2009 J Biomed Sci]]
:::::: [[File:Liu 2009 J Biomed Sci CORRECTION.png|400px|link=Liu 2009 J Biomed Sci]]
:::: '''23''' Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. '''J Biomed Sci''' 16:98. - [[Liu 2009 J Biomed Sci |»Bioblast link«]]
:::: '''24''' Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. '''J Biomed Sci''' 16:98. - [[Liu 2009 J Biomed Sci |»Bioblast link«]]
<br>
<br>


:::::: [[File:Balaban 2005 Cell CORRECTION.png|400px|link=Balaban 2005 Cell]]
:::::: [[File:Balaban 2005 Cell CORRECTION.png|400px|link=Balaban 2005 Cell]]
:::: '''24''' Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. '''Cell''' 120:483-95. - [[Balaban 2005 Cell |»Bioblast link«]]
:::: '''25''' Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. '''Cell''' 120:483-95. - [[Balaban 2005 Cell |»Bioblast link«]]
<br>
<br>


:::::: [[File:Brownlee 2003 J Clin Invest CORRECTION.png|400px|link=Brownlee 2003 J Clin Invest]]
:::::: [[File:Brownlee 2003 J Clin Invest CORRECTION.png|400px|link=Brownlee 2003 J Clin Invest]]
:::: '''25''' Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. '''J Clin Invest''' 112:1788-90. - [[Brownlee 2003 J Clin Invest |»Bioblast link«]]
:::: '''26''' Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. '''J Clin Invest''' 112:1788-90. - [[Brownlee 2003 J Clin Invest |»Bioblast link«]]
<br>
<br>



Revision as of 00:58, 11 April 2023

Publications in the MiPMap
Gnaiger E (2023) Complex II ambiguities ― FADH2 in the electron transfer system. MitoFit Preprints 2023.3.v2. https://doi.org/10.26124/mitofit:2023-0003.v2

» MitoFit Preprints 2023.3.v2.

MitoFit pdf

Complex II ambiguities ― FADH2 in the electron transfer system

Gnaiger Erich (2023) MitoFit Prep

Abstract:

CII-ambiguities Graphical abstract.png
Version 2 (v2) 2023-04-04 10.26124/mitofit:2023-0003.v2
Version 1 (v1) 2023-03-247 10.26124/mitofit:2023-0003 - »Link to all versions«

The current narrative that the reduced coenzymes NADH and FADH2 feed electrons from the tricarboxylic acid cycle into the mitochondrial electron transfer system creates ambiguities around respiratory Complex II (CII). The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces covalently bound FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the membrane-bound electron transfer system (ETS) depict FADH2 in the mitochondrial matrix to be oxidized by CII. This leads to the false conclusion that FADH2 feeds electrons into the ETS through CII, including FADH2 from the tricarboxylic acid cycle, the β-oxidation cycle in fatty acid oxidation, and the glycerophosphate shuttle. In reality, FAD and succinate are the substrates of SDHA at the ETS-entry into CII. The reduced flavin groups FADH2 and FMNH2 are products downstream within CII and CI, respectively. Further electron transfer converges at the coenzyme Q-junction. Similarly, electron transferring flavoprotein and mitochondrial glycerophosphate dehydrogenase feed electrons into the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational tools call for quality control, to secure scientific standards in current communications on bioenergetics and ultimately support adequate clinical applications.
Keywords: coenzyme Q junction; Complex CII; electron transfer system; fatty acid oxidation; flavin adenine dinucleotide; succinate dehydrogenase; tricarboxylic acid cycle

O2k-Network Lab: AT Innsbruck Oroboros


ORCID: ORCID.png Gnaiger Erich, Oroboros Instruments, Innsbruck, Austria

Acknowledgements: I thank Luiza H. Cardoso and Sabine Schmitt for stimulating discussions, and Paolo Cocco for expert help on the graphical abstract and Figures 1b and c. Contribution to the European Union’s Horizon 2020 research and innovation program Grant 857394 (FAT4BRAIN).

Updates to Supplement Figure S1

Last update 2023-04-10
Figure S1. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. Chronological sequence of publications from 2001 to 2023.


Shirakawa 2023 Sci Rep CORRECTION.png
1 Shirakawa R, Nakajima T, Yoshimura A, Kawahara Y, Orito C, Yamane M, Handa H, Takada S, Furihata T, Fukushima A, Ishimori N, Nakagawa M, Yokota I, Sabe H, Hashino S, Kinugawa S, Yokota T (2023) Enhanced mitochondrial oxidative metabolism in peripheral blood mononuclear cells is associated with fatty liver in obese young adults. Sci Rep 13:5203. - »Bioblast link«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Eyenga 2022 Cells CORRECTION.png
2 Eyenga P, Rey B, Eyenga L, Sheu SS (2022) Regulation of oxidative phosphorylation of liver mitochondria in sepsis. Cells 11:1598. - »Bioblast link«


Tseng 2022 Cells CORRECTION.png
3 Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. Cells 11:4020. - »Bioblast link«


Kumar 2021 J Biol Chem CORRECTION.png
4 Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, Banerjee R (2021) A redox cycle with complex II prioritizes sulfide quinone oxidoreductase dependent H2S oxidation. J Biol Chem 298:101435. - »Bioblast link«


Hidalgo-Gutierrez CORRECTION.png
5 Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. Antioxidants (Basel) 10:520. - »Bioblast link«


Han 2021 Am J Respir Cell Mol Biol CORRECTION.png
6 Han S, Chandel NS (2021) Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis. Am J Respir Cell Mol Biol 65:134-45. - »Bioblast link«


Chakrabarty 2021 Cell Stem Cell 1 CORRECTION.png
Chakrabarty 2021 Cell Stem Cell 3 CORRECTION.png
7 Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28:394-408. - »Bioblast link«


Martinez-Reyes 2020 Nature CORRECTION.png
8 Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585:288-92. - »Bioblast link«


McElroy 2020 Cell Metab CORRECTION.png
9 McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS (2020) NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial Complex I dysfunction. Cell Metab 32:301-8.e6. - »Bioblast link«


Jian 2020 Cell Metab CORRECTION.png
10 Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. Cell Metab 31:892-908. - »Bioblast link«
While CI functions as a proton pump, CII does not. Depicting CII as a proton pump would be analogous to falsely portraying FADH2 as the substrate of CII, as if it were a copy of CI, which functions as a proton pump with NADH as its substrate.


Tabassum 2020 J Biomed Res Environ Sci CORRECTION.png
11 Tabassum N, Kheya IS, Ibn Asaduzzaman SA, Maniha SM, Fayz AH, Zakaria A, Fayz AH, Zakaria A, Noor R (2020) A review on the possible leakage of electrons through the electron transport chain within mitochondria. J Biomed Res Environ Sci 1:105-13. |»Bioblast link«]]


Han 2019 Am J Respir Cell Mol Biol CORRECTION.png
12 Han S, Chandel NS (2019) There is no smoke without mitochondria. Am J Respir Cell Mol Biol 60:489-91. - »Bioblast link«


Grandoch 2019 Nat Metab CORRECTION.png
13 Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nat Metab 1:546-59. - »Bioblast link«
NADH is shown as the product of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when FADH2 is shown as the substrate of CII.


McCollum 2019 Front Plant Sci CORRECTION.png
14 McCollum C, Geißelsöder S, Engelsdorf T, Voitsik AM, Voll LM (2019) Deficiencies in the mitochondrial electron transport chain affect redox poise and resistance toward Colletotrichum higginsianum. Front Plant Sci 10:1262. - »Bioblast link«


Torres 2017 Cell Metab CORRECTION.png
15 Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, Fix AM, Smith CA, Gilliam LA, Karvinen S, Lowe DA, Spangenburg EE, Zeczycki TN, Shaikh SR, Neufer PD (2017) 17β-estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. Cell Metab 27:167-79. - »Bioblast link«


McElroy 2017 Exp Cell Res.png
16 McElroy GS, Chandel NS (2017) Mitochondria control acute and chronic responses to hypoxia. Exp Cell Res 356:217-22. - »Bioblast link«


Martinez-Reyes 2016 Mol Cell CORRECTION.png
17 Martínez-Reyes I, Diebold LP, Kong H, Schieber M, Huang H, Hensley CT, Mehta MM, Wang T, Santos JH, Woychik R, Dufour E, Spelbrink JN, Weinberg SE, Zhao Y, DeBerardinis RJ, Chandel NS (2016) TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol Cell 61:199-209. - »Bioblast link«


Cadonic 2016 Mol Neurobiol CORRECTION.png
18 Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. Mol Neurobiol 53:6078-90. - »Bioblast link«


Sullivan 2014 Cell Cycle CORRECTION.png
19 Sullivan LB, Chandel NS. (2014) Mitochondrial metabolism in TCA cycle mutant cancer cells. Cell Cycle 13:347-8. - »Bioblast link«


Beutner 2014 PLoS One CORRECTION.png
20 Beutner G, Eliseev RA, Porter GA Jr (2014) Initiation of electron transport chain activity in the embryonic heart coincides with the activation of mitochondrial complex 1 and the formation of supercomplexes. PLoS One 9:e113330. - »Bioblast link«


Hamanaka 2013 Cell Logist CORRECTION.png
21 Hamanaka RB, Chandel NS (2013) Mitochondrial metabolism as a regulator of keratinocyte differentiation. Cell Logist 3:e25456. - »Bioblast link«


Keane 2011 Parkinsons Dis CORRECTION.png
22 Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson's disease. Parkinsons Dis 2011:716871. - »Bioblast link«


Snyder 2009 Antioxid Redox Signal.png
23 Hamanaka RB, Chandel NS (2013) Snyder CM, Chandel NS (2009) Mitochondrial regulation of cell survival and death during low-oxygen conditions. Antioxid Redox Signal 11:2673-83. - »Bioblast link«


Liu 2009 J Biomed Sci CORRECTION.png
24 Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. J Biomed Sci 16:98. - »Bioblast link«


Balaban 2005 Cell CORRECTION.png
25 Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483-95. - »Bioblast link«


Brownlee 2003 J Clin Invest CORRECTION.png
26 Brownlee M (2003) A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest 112:1788-90. - »Bioblast link«


Supplement Figure S1 (v2)

Figure S1. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer. Chronological sequence of publications from 2001 to 2023.


Arnold, Finley 2022 CORRECTION.png
a Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299:102838. - »Bioblast link«


Jarmuszkiewicz 2023 Front Biosci CORRECTION.png
b Jarmuszkiewicz W, Dominiak K, Budzinska A, Wojcicki K, Galganski L (2023) Mitochondrial coenzyme Q redox homeostasis and reactive oxygen species production. Front Biosci (Landmark Ed) 28:61. - »Bioblast link«


Billingham 2022 Nat Immunol CORRECTION.png
c Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, Miska J, Chandel NS (2022) Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol 23:692-704. - »Bioblast link«


Chen 2022 Am J Physiol Cell Physiol CORRECTION.png
d Chen CL, Zhang L, Jin Z, Kasumov T, Chen YR (2022) Mitochondrial redox regulation and myocardial ischemia-reperfusion injury. Am J Physiol Cell Physiol 322:C12-23. - »Bioblast link«


Yuan 2022 Oxid Med Cell Longev CORRECTION.png
e Yuan Q, Zeng ZL, Yang S, Li A, Zu X, Liu J (2022) Mitochondrial stress in metabolic inflammation: modest benefits and full losses. Oxid Med Cell Longev 2022:8803404. - »Bioblast link«


Ahmad 2022 StatPearls CORRECTION.png
f Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. StatPearls Publishing StatPearls [Internet]. Treasure Island (FL) - »Bioblast link«


Turton 2022 Int J Mol Sci CORRECTION.png
g Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP (2022) The biochemical assessment of mitochondrial respiratory chain disorders. Int J Mol Sci 23:7487. - »Bioblast link«


Chandel 2021 Cold Spring Harb Perspect Biol CORRECTION.png
h Chandel NS (2021) Mitochondria. Cold Spring Harb Perspect Biol 13:a040543. - »Bioblast link«


Yin 2021 FASEB J CORRECTION.png
i Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. FASEB J 35:e21974. - »Bioblast link«
Missaglia 2021 CORRECTION.png
j Missaglia S, Tavian D, Angelini C (2021) ETF dehydrogenase advances in molecular genetics and impact on treatment. Crit Rev Biochem Mol Biol 56:360-72. - »Bioblast link«


Read 2021 Redox Biol CORRECTION.png
k Read AD, Bentley RE, Archer SL, Dunham-Snary KJ (2021) Mitochondrial iron-sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biol 47:102164. - »Bioblast link«


Gasmi 2021 Arch Toxicol CORRECTION.png
l Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 95:1161-78. - »Bioblast link«


Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png
m Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opinion Orphan Drugs 9:151-60. - »Bioblast link«


Martinez-Reyes, Chandel 2020 CORRECTION.png
n Martínez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11:102. - »Bioblast link«


Raimondi 2020 Br J Cancer CORRECTION.png
o Raimondi V, Ciccarese F, Ciminale V (2020) Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 122:168-81. - »Bioblast link«


Risiglione 2020 Int J Mol Sci CORRECTION.png
p Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. Int J Mol Sci 21:E7809. - »Bioblast link«


Nolfi-Donegan 2020 Redox Biol CORRECTION.png
q Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37:101674. - »Bioblast link«


Morelli 2019 Open Biol CORRECTION.png
r Morelli AM, Ravera S, Calzia D, Panfoli I (2019) An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane. Open Biol 9:180221. - »Bioblast link«


Lewis 2019 CORRECTION.png
s Lewis MT, Kasper JD, Bazil JN, Frisbee JC, Wiseman RW (2019) Quantification of mitochondrial oxidative phosphorylation in metabolic disease: application to Type 2 diabetes. Int J Mol Sci 20:5271. - »Bioblast link«


Sarmah 2019 Transl Stroke Res CORRECTION.png
t Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, Kalia K, Borah A, Kumar A, Wang X, Yavagal DR, Dave KR, Bhattacharya P (2019) Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res doi: 10.1007/s12975-018-0642-y - »Bioblast link«
Yepez 2018 PLOS One Fig1B.jpg
u Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J (2018) OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLOS ONE 13:e0199938. - »Bioblast link«


Fink 2018 J Biol Chem CORRECTION.png
v Fink BD, Bai F, Yu L, Sheldon RD, Sharma A, Taylor EB, Sivitz WI (2018) Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration. J Biol Chem 293:19932-41. - »Bioblast link«


Zhang 2018 Mil Med Res CORRECTION.png
w Zhang H, Feng YW, Yao YM (2018) Potential therapy strategy: targeting mitochondrial dysfunction in sepsis. Mil Med Res 5:41. - »Bioblast link«


Chowdhury 2018 Oxid Med Cell Longev CORRECTION.png
x Roy Chowdhury S, Banerji V (2018) Targeting mitochondrial bioenergetics as a therapeutic strategy for chronic lymphocytic leukemia. Oxid Med Cell Longev 2018:2426712. - »Bioblast link«


De Villiers 2018 Adv Exp Med Biol CORRECTION.png
y de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS (2018) The role of reactive oxygen species in adipogenic differentiation. Adv Exp Med Biol 1083:125-144. - »Bioblast link«


Polyzos 2017 Mech Ageing Dev CORRECTION.png
z Polyzos AA, McMurray CT (2017) The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease. Mech Ageing Dev 161:181-97. - »Bioblast link«


File:Jones, Bennett 2017 Chapter 4 CORRECTION.png
α Jones PM, Bennett MJ (2017) Chapter 4 - Disorders of mitochondrial fatty acid β-oxidation. Elsevier In: Garg U, Smith LD , eds. Biomarkers in inborn errors of metabolism. Clinical aspects and laboratory determination:87-101. - »Bioblast link«


DeBerardinis, Chandel 2016 CORRECTION.png
β DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. - »Bioblast link«


Nsiah-Sefaa 2016 Bioscie Reports CORRECTION.png
γ Nsiah-Sefaa A, McKenzie M (2016) Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci Rep 36:e00313. - »Bioblast link«


Prochaska 2013 Springer CORRECTION.png
δ Prochaska LJ, Cvetkov TL (2013) Mitochondrial electron transport. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_25 - »Bioblast link«


Fisher-Wellman 2012 Trends Endocrinol Metab Fig2 CORRECTION.png
ε, ζ Fisher-Wellman KH, Neufer PD (2012) Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol Metab 23:142-53. - »Bioblast link«


Benard 2011 Springer CORRECTION.png
η Benard G, Bellance N, Jose C, Rossignol R (2011) Relationships between mitochondrial dynamics and bioenergetics. In: Lu Bingwei (ed) Mitochondrial dynamics and neurodegeneration. Springer ISBN 978-94-007-1290-4:47-68. - »Bioblast link«


Nussbaum 2005 J Clin Invest CORRECTION.png
Θ Nussbaum RL (2005) Mining yeast in silico unearths a golden nugget for mitochondrial biology. J Clin Invest 115:2689-91. - »Bioblast link«


Himms-Hagen, Harper 2001 CORRECTION.png
ί Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226:78-84. - »Bioblast link«


Sanchez et al 2001 CORRECTION.png
κ Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R (2001) Effect of cyclosporin A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. Br J Pharmacol 133:781-8. - »Bioblast link«


Brownlee 2001 Nature CORRECTION.png
λ Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 14:813-20. - »Bioblast link«
Ref. [34] Arden GB, Ramsey DJ (2015) Diabetic retinopathy and a novel treatment based on the biophysics of rod photoreceptors and dark adaptation. In: Kolb H, Fernandez E, Nelson R, eds. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995-. - »Bioblast link«


Supplement Figure S2 (v2)

Figure S2. Complex II ambiguities in graphical representations on FADH2 as a substrate of Complex II in the canonical forward electron transfer (retrieved 2023-03-21 to 2023-04-04)
OpenStax Biology.png
Website 1: OpenStax Biology - Fig. 7.10 Oxidative phosphorylation (CC BY 3.0). - OpenStax Biology got it wrong in figures and text. The error is copied without quality assessment and propagated in several links.
Website 2: Concepts of Biology - 1st Canadian Edition by Charles Molnar and Jane Gair - Fig. 4.19a
Website 3: LibreTexts Biology Oxidative Phosphorylation - Electron Transport Chain - Figure 7.11.1
Website 4: lumen Biology for Majors I - Fig. 1
Website 5: Pharmaguideline
Website 37: Texas Gateway - Figure 7.11
Website 38: Concepts of Biology - Charles Molnar and Jane Gair. 4.3 Citric Acid Cycle and Oxidative Phosphorylation. Concepts of Biology - 1st Canadian Edition, BCcampus
Website 39: -CUNY
Website 40: - Brain Brooder
Khan Academy modified from OpenStax CORRECTION.png
Website 6: Khan Academy - Image modified from "Oxidative phosphorylation: Figure 1", by OpenStax College, Biology (CC BY 3.0). Figure and text underscore the FADH2-error: "FADH2 .. feeds them (electrons) into the transport chain through complex II."
Website 7: Saylor Academy
Jack Westin CORRECTION.png
Website 8: Jack Westin MCAT Courses
Expii OpenStax CORRECTION.png
Website 1: OpenStax Biology - Fig. 7.12
Website 6: Khan Academy - Image modified from "Oxidative phosphorylation: Figure 3," by Openstax College, Biology (CC BY 3.0)
Website 7: Saylor Academy
Website 9: expii - Image source: By CNX OpenStax
Website 37: Texas Gateway - Figure 7.11
Website 39: -CUNY
Labxchange CORRECTION.png
Website 10: Labxchange - Figure 8.15 credit: modification of work by Klaus Hoffmeier
Biologydictionary.net CORRECTION.png
Website 4: lumen Biology for Majors I - Fig. 3
Website 9: expii - By OpenStax College CC BY 3.0, via Wikimedia Commons
Website 11: wikimedia 30148497 - Anatomy & Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, 2013-06-19
Website 12: biologydictionary.net 2018-08-21
Website 13: Quora
Website 14: TeachMePhysiology - Fig. 1. 2023-03-13
Website 15: ThoughtCo
Website 16: toppr
Researchtweet CORRECTION.png
Website 17: researchtweet
Website 18: Microbe Notes
BiochemDen CORRECTION.png
Website 19: BiochemDen.com
Vector Mine CORRECTION.png
Website 20: dreamstime
Website 21: VectorMine
Creative-biolabs CORRECTION.png
Website 22: creative-biolabs
Khan Academy CORRECTION.png
Website 6: Khan Academy
Website 7: Saylor Academy
Expii-Whitney, Rolfes 2002 CORRECTION.png
Website 9: expii - Whitney, Rolfes 2002
FlexBooks 2 0 CORRECTION.png
Website 23: FlexBooks - CK-12 Biology for High School- 2.28 Electron Transport, Figure 2
Hyperphysics CORRECTION.png
Website 24: hyperphysics
Labster Theory CORRECTION.png
Website 25: Labster Theory
Nau.edu CORRECTION.png
Website 26: nau.edu
Quizlet CORRECTION.png
Website 27: Quizlet
ScienceDirect CORRECTION.png
Website 28: ScienceDirect
ScienceFacts CORRECTION.png
Website 29: ScienceFacts
SNC1D CORRECTION.png
Website 30: SNC1D - BIOLOGY LESSON PLAN BLOG
Unm.edu CORRECTION.png
Website 31: unm.edu
Wikimedia ETC CORRECTION.png
Website 9: expii - By User:Rozzychan CC BY-SA 2.5, via Wikimedia Commons
Website 32: Wikimedia
YouTube Dirty Medicine Biochemistry CORRECTION.png
Website 33: YouTube Dirty Medicine Biochemistry - Uploaded 2019-07-18
LibreTexts Chemistry CORRECTION.png
Website 34: - LibreTexts Chemistry - The Citric Acid Cycle and Electron Transport – Fig. 12.4.3
YouTube sciencemusicvideos CORRECTION.png
Website 35: YouTube sciencemusicvideos - Uploaded 2014-08-19
ThoughtCo-Getty Images CORRECTION.png
Website 15: ThoughtCo - extender01 / iStock / Getty Images Plus
Website 17: dreamstime
Ck12 CORRECTION.png
Website 36: cK-12
BBC BITESIZE CORRECTION.png
Website 41: - BBC BITESIZE cK-12
SparkNotes CORRECTION.png
Website 42: - SparkNotes
Expii-Gabi Slizewska CORRECTION.png
Website 9: expii - Image source: By Gabi Slizewska


Labels:






FAT4BRAIN 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.